首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of this study was to determine the effect of leucine supplementation on indices of muscle damage following eccentric-based resistance exercise. In vitro, the amino acid leucine has been shown to reduce proteolysis and stimulate protein synthesis. Twenty-seven untrained males (height 178.6 ± 5.5 cm; body mass 77.7 ± 13.5 kg; age 21.3 ± 1.6 years) were randomly divided into three groups; leucine (L) (n = 10), placebo (P) (n = 9) and control (C) (n = 8). The two experimental groups (L and P) performed 100 depth jumps from 60 cm and six sets of ten repetitions of eccentric-only leg presses. Either leucine (250 mg/kg bm) or placebo was ingested 30 min before, during and immediately post-exercise and the morning of each recovery day following exercise. Muscle function was determined by peak force during an isometric squat and by jump height during a static jump at pre-exercise (PRE) and 24, 48, 72, and 96 h post-exercise (24, 48, 72, 96 h). Additionally, at these time points each group’s serum levels of creatine kinase (CK) and myoglobin (Mb) along with perceived feelings of muscle soreness were determined. None of the C group dependent variables was altered by the recurring testing procedures. Peak force was significantly decreased across all time points for both experimental groups. The L group experienced an attenuated drop in mean peak force across all post-exercise time points compared to the P group. Jump height significantly decreased from PRE for both the L and P group at 24 h and 48 h. CK and Mb was significantly elevated from PRE for both experimental groups at 24 h. Muscle soreness increased across all time points for the both the L and P group, and the L group experienced a significantly higher increase in mean muscle soreness post-exercise. Following exercise-induced muscle damage, high-dose leucine supplementation may help maintain force output during isometric contractions, however, not force output required for complex physical tasks thereby possibly limiting its ergogenic effectiveness.  相似文献   

3.
4.
The purpose of this study was to examine the acute effect of resistance exercise (RE) on muscle androgen receptor (AR) and glucocorticoid receptor (GR) protein content. Fifteen resistance-trained men (n = 8; 21 ± 1 years, 175.3 ± 6.7 cm, 90.8 ± 11.6 kg) and women (n = 7; 24 ± 5 years, 164.6 ± 6.7 cm, 76.4 ± 15.6 kg) completed 6 sets of 10 repetitions of heavy squats. Blood samples were obtained before RE, after 3 and 6 sets of squats, and 5, 15, 30 and 70 min after RE. Muscle biopsies from the vastus lateralis were obtained before RE, and 10 min and 70 min after RE. Blood samples were analyzed for total and free testosterone concentrations and muscle samples were analyzed for AR and GR protein content. Circulating total testosterone increased significantly (p  0.05) in men and free testosterone increased in men and women with exercise. AR was significantly reduced at 70 min post-exercise in men and at 10 min post-exercise in women compared to pre-exercise. There were no changes in GR following RE, but GR was significantly higher in women compared to men. These findings support a current paradigm for stabilization followed by a reduction and then a rebound in the acute AR response to RE but demonstrate that gender differences exist in the timeline of the AR response.  相似文献   

5.
The purpose of this study was to determine the effect of ingestion of 100 g of carbohydrates on net muscle protein balance (protein synthesis minus protein breakdown) after resistance exercise. Two groups of eight subjects performed a resistance exercise bout (10 sets of 8 repetitions of leg presses at 80% of 1-repetition maximum) before they rested in bed for 4 h. One group (CHO) received a drink consisting of 100 g of carbohydrates 1 h postexercise. The other group (Pla) received a noncaloric placebo drink. Leg amino acid metabolism was determined by infusion of 2H5- or 13C6-labeled phenylalanine, sampling from femoral artery and vein, and muscle biopsies from vastus lateralis. Drink intake did not affect arterial insulin concentration in Pla, whereas insulin increased several times after the drink in CHO (P < 0.05 vs. Pla). Arterial phenylalanine concentration fell slightly after the drink in CHO. Net muscle protein balance between synthesis and breakdown did not change in Pla, whereas it improved in CHO from -17 +/- 3 nmol.ml(-1).100 ml leg(-1) before drink to an average of -4 +/- 4 and 0 +/- 3 nmol.ml(-1).100 ml leg(-1) during the second and third hour after the drink, respectively (P < 0.05 vs. Pla during last hour). The improved net balance in CHO was due primarily to a progressive decrease in muscle protein breakdown. We conclude that ingestion of carbohydrates improved net leg protein balance after resistance exercise. However, the effect was minor and delayed compared with the previously reported effect of ingestion of amino acids.  相似文献   

6.
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.  相似文献   

7.
The purpose of this study was to examine the effect of resistance exercise on postprandial lipemia. Fourteen young men and women participated in each of three treatments: 1) control (Con), 2) resistance exercise (RE), and 3) aerobic exercise (AE) estimated to have an energy expenditure (EE) equal that for RE. Each trial consisted of performing a treatment on day 1 and ingesting a fat-tolerance test meal 16 h later (day 2). Resting metabolic rate and fat oxidation were measured at baseline and at 3 and 6 h postprandial on day 2. Blood was collected at baseline and at 0.5, 1, 2, 3, 4, 5, and 6 h after meal ingestion. RE and AE were similar in EE [1.7 +/- 0.1 vs. 1.6 +/- 0.1 (SE) MJ, respectively], as measured by using the Cosmed K4b(2). Baseline triglycerides (TG) were significantly lower after RE than after Con (19%) and AE (21%). Furthermore, the area under the postprandial response curve for TG, adjusted for baseline differences, was significantly lower after RE than after Con (14%) and AE (18%). Resting fat oxidation was significantly greater after RE than after Con (21%) and AE (28%). These results indicate that resistance exercise lowers baseline and postprandial TG, and increases resting fat oxidation, 16 h after exercise.  相似文献   

8.
Flywheel-based resistance exercise (RE) attenuates muscle atrophy during hindlimb suspension. We have previously shown that protein synthesis is elevated in response to RE, but the effect on protein degradation, cell proliferation, or apoptosis was not investigated. We hypothesized that, in addition to affecting protein synthesis, RE inhibits processes that actively contribute to muscle atrophy during hindlimb suspension. Male rats were housed in regular cages (control), tail suspended for 2 wk (HS), or HS with RE every other day for 2 wk (HSRE). Although RE attenuated soleus muscle atrophy during HS, the observed fivefold elevation in apoptosis and the 53% decrease in cell proliferation observed with HS were unaffected by RE. Expression of genes encoding components of the ubiquitin-proteasome pathway of protein degradation were elevated with HS, including ubiquitin, MAFbx, Murf-1, Nedd4, and XIAP, and proteasome subunits C2 and C9. Total ubiquitinated protein was increased with HS, but proteasome activity was not different from control. RE selectively altered the expression of different components of this pathway: MAFbx, Murf-1, and ubiquitin mRNA abundance were downregulated, whereas C2 and C9 subunits remained elevated. Similarly, Nedd4 and XIAP continued to be upregulated, potentially accounting for the observed augmentation in total ubiquitinated protein with RE. Thus a different constellation of proteins is likely ubiquitinated with RE due to altered ubiquitin ligase composition. In summary, the flywheel-based resistance exercise paradigm used in this study is associated with the inhibition of some mechanisms associated with muscle atrophy, such as the increase in MAFbx and Murf-1, but not with others, such as proteasome subunit remodeling, apoptosis, and decreased proliferation, potentially accounting for the inability to completely restore muscle mass. Identifying specific exercise parameters that affect these latter processes may be useful in designing effective exercise strategies in the elderly or during spaceflight.  相似文献   

9.
To assess unloaded knee extensor temporal strength changes, healthy subjects without asthma performed 40 continuous days of unilateral limb suspension, whereby their left leg refrained from normal weight-bearing and ambulatory activity. During the 40-day period, subjects performed resistance exercise (REX) with their unloaded leg on an inertial resistance ergometer and, as part of a double-blind design, consumed the maximal oral therapeutic dosage of albuterol (i.e., 16 mg.d) or a placebo (i.e., lactose) with no crossover. Workout data were partitioned into 4 10-day periods that ran consecutively. Dependent strength variables included concentric total work, eccentric total work, concentric average power (CAP), and eccentric average power (EAP). Dependent variables were analyzed with 5 (time) x 2 (group) x 2 (gender) mixed factorial analyses of variance and the Tukey honestly significant difference test. Concentric total work, CAP, and EAP each demonstrated a time-group-gender (p < 0.05) interaction. Female REX-placebo subjects had the greatest percentage of unloaded knee extensor strength loss. However, female REX-albuterol subjects fared best throughout the 40-day period and incurred significant unloaded knee extensor strength gains. Differences in strength changes between male and female REX-albuterol subjects was likely due to the higher relative dosage administered to the latter, as body mass showed a gender (i.e., men > women) effect. Future research may elucidate the ideal dose-response relationship for REX-albuterol treatment for use aboard manned space flights and in other disuse models. Coaches and practitioners should carefully examine their sport-governing bodies' rules on albuterol administration and give the drug only if an athlete's health warrants such treatment.  相似文献   

10.
11.
12.
13.
Effect of glucose infusion on muscle malonyl-CoA during exercise   总被引:1,自引:0,他引:1  
Previous work in this laboratory has shown that muscle malonyl-CoA, the inhibitor of carnitine palmitoyltransferase I (CPT I), decreased during exercise. Hepatic malonyl-CoA content decreases when glucose availability decreases such as during fasting or when the glucagon-to-insulin ratio increases such as during prolonged exercise or in response to insulin deficiency. To investigate the effect of glucose infusion on muscle malonyl-CoA during exercise, male rats were anesthetized (pentobarbital via venous catheters) at rest or after running (21 m/min, 15% grade) for 30 or 60 min. During exercise rats were infused with either glucose (0.625 g/ml) or saline at a rate of 1.5 ml/h. Gastrocnemius muscles and liver samples were frozen at liquid nitrogen temperature. Muscle malonyl-CoA decreased from 1.24 +/- 0.06 to 0.69 +/- 0.05 nmol/g with glucose infusion and to 0.43 +/- 0.04 nmol/g with saline infusion during 60 min of exercise. In the liver, glucose infusion prevented the drop in malonyl-CoA. This indicates that glucose infusion attenuates the progressive decline in muscle malonyl-CoA and prevents the decline in liver malonyl-CoA during prolonged exercise.  相似文献   

14.
It is well established that resistance exercise can damage muscle tissue, but the combined effects of hypohydration and resistance exercise on muscle damage are unclear. Two common circulating markers of muscle damage, myoglobin (Mb) and creatine kinase (CK) may be attenuated by fluid ingestion post-exercise. The purpose of this study was to examine the combined effect of resistance exercise and hydration state on muscle damage. Seven healthy resistance-trained males (age = 23 +/- 4 years; body mass = 87.8 +/- 6.8 kg; body fat = 11.5 +/- 5.2%) completed 3 identical resistance exercise bouts (6 sets of up to 10 repetitions of the back squat) in different hydration states: euhydrated (HY0), hypohydrated approximately 2.5% body mass (HY2.5), and hypohydrated approximately 5.0% body mass (HY5). Subjects achieved desired hydration states via controlled water deprivation, exercise-heat stress, and fluid intake. Both Mb and CK were measured during euhydrated rest (PRE). Mb was also measured immediately post-exercise, 1 hour (+1H) and 2 hours (+2H) post-exercise; CK was measured at 24 and 48 hours post-exercise. Body mass decreased 0.2 +/- 0.4%, 2.4 +/- 0.4%, and 4.8 +/- 0.4% during HY0, HY2.5, and HY5, respectively. Mb concentrations increased significantly (effect size >or=1, p < 0.05) from PRE (2.6 +/- 1.1, 3.5 +/- 2.8, and 3.2 +/- 1.6 nmol x L(-1)) to +1H (5.3 +/- 3.4, 6.8 +/- 3.2, and 7.6 +/- 2.8 nmol x L(-1)), and +2H (5.5 +/- 3.8, 6.2 +/- 3.0, and 7.2 +/- 3.0 nmol x L(-1)) for HY0, HY2.5, and HY5, respectively, but were not significantly different between trials. CK concentrations remained within the normal resting range at all time points. Thus, hypohydration did not enhance muscle damage following the resistance exercise challenge. Despite these results, athletes are encouraged to commence exercise in a euhydrated state to maximize endogenous hormonal, mechanical, and metabolic benefits.  相似文献   

15.
16.
The purpose of this study was to investigate the effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. Pre-exhaustion exercise, a technique frequently used by weight trainers, involves combining a single-joint exercise immediately followed by a related multijoint exercise (e.g., a knee extension exercise followed by a leg press exercise). Seventeen healthy male subjects performed 1 set of a leg press exercise with and without pre-exhaustion exercise, which consisted of 1 set of a knee extension exercise. Both exercises were performed at a load of 10 repetitions maximum (10 RM). Electromyography (EMG) was recorded from the rectus femoris, vastus lateralis, and gluteus maximus muscles simultaneously during the leg press exercise. The number of repetitions of the leg press exercise performed by subjects with and without pre-exhaustion exercise was also documented. The activation of the rectus femoris and the vastus lateralis muscles during the leg press exercise was significantly less when subjects were pre-exhausted (p < 0.05). No significant EMG change was observed for the gluteus maximus muscle. When in a pre-exhausted state, subjects performed significantly (p < 0.001) less repetitions of the leg press exercise. Our findings do not support the popular belief of weight trainers that performing pre-exhaustion exercise is more effective in order to enhance muscle activity compared with regular weight training. Conversely, pre-exhaustion exercise may have disadvantageous effects on performance, such as decreased muscle activity and reduction in strength, during multijoint exercise.  相似文献   

17.
Previous research has shown that L-carnitine L-tartrate (LCLT) supplementation beneficially affects markers of hypoxic stress following resistance exercise. However, the mechanism of this response is unclear. Therefore, the primary purpose of this study was to determine the effects of LCLT supplementation on muscle tissue oxygenation during and after multiple sets of squat exercise. Nine healthy, previously resistance-trained men (25.2 +/- 6.years, 91.2 +/- 10.2 kg, 180.2 +/- 6.3 cm) ingested 2 g.d of LCLT or an identical placebo for 23 days in a randomized, balanced, crossover, double-blind, placebo-controlled, repeated-measures study design. On day 21, forearm muscle oxygenation was measured during and after an upper arm occlusion protocol using near infrared spectroscopy (NIRS), which measures the balance of oxygen delivery in relation to oxygen consumption. On day 22, subjects performed 5 sets of 15 to 20 repetitions of squat exercise with corresponding measures of thigh muscle oxygenation, via NIRS, and serial blood draws. Compared to the placebo trial, muscle oxygenation was reduced in the LCLT trial during upper arm occlusion and following each set of resistance exercise. Despite reduced oxygenation, plasma malondealdehyde, a marker of membrane damage, was attenuated during the LCLT trial. There were no differences between trials in the vasoactive substance prostacyclin. In conclusion, because oxygen delivery was occluded during the forearm protocol, it is proposed that enhanced oxygen consumption mediated the reduced muscle oxygenation during the LCLT trial. Enhanced oxygen consumption would explain why hypoxic stress was attenuated with LCLT supplementation.  相似文献   

18.
The provision of additional protein (Pro)to a carbohydrate (CHO) supplement resulted in an enhanced rate ofmuscle glycogen resynthesis after endurance exercise (Zawadzki et al.,J. Appl. Physiol. 72: 1854-1859,1992). A comparison of isoenergetic CHO and CHO/Pro formula drinks onmuscle glycogen resynthesis has not been examined after eitherendurance or resistance exercise. We studied the effect of isoenergeticCHO (1 g/kg) and CHO/Pro/fat (66% CHO, 23% Pro, 11% fat) definedformula drinks and placebo (Pl) given immediately(t = 0 h) and 1 h(t = +1 h) after resistance exercisein 10 healthy young men. They performed a whole body workout (9 exercises/3 sets at 80% 1 repetition maximum) with unilateral kneeextension exercise [exercise (Ex) and control (Con) leg].The CHO/Pro/fat and CHO trials resulted in significantly greater(P < 0.05) plasma insulin andglucose concentration compared with Pl. Muscle glycogen wassignificantly lower (P < 0.05) for the Ex vs. Con leg immediately postexercise for all three conditions. The rate of glycogen resynthesis was significantly greater(P < 0.05) for both CHO/Pro/fat andCHO (23.0 ± 4.5 and 19.3 ± 6.1 mmol · kg drymuscle1 · h1,respectively) vs. Pl (Ex = 2.8 ± 2.3 and Con = 1.4 ± 3.6 mmol · kg drymuscle1 · h1).These results demonstrated that a bout of resistance exercise resultedin a significant decrease in muscle glycogen and that consumption of anisoenergetic CHO or CHO/Pro/fat formula drink resulted in similar ratesof muscle glycogen resynthesis after resistance exercise. This suggeststhat total energy content and CHO content are important in theresynthesis of muscle glycogen.

  相似文献   

19.
This review summarizes evidence that prolactin (PRL) is involved directly in the regulation of ovarian steroidogenesis. The scope of this paper will be limited to two areas. The first area involves the regulation of the corpus luteum function and the second the effect of PRL on steroidogenesis during the follicular phase of the oestrous cycle. Cyclic changes of plasma PRL levels and the ovarian receptors which bind PRL have been observed during the oestrous cycle of domestic animals. The luteotropic effect of PRL and its failure is also presented. PRL may exert a physiological effect on follicle steroidogenesis but its effect depends on the level of follicle maturation. The effect of PRL treatment on estrogen production by follicular cells in vivo and in vitro was studied. The results of many papers indicate suppression of estrogen secretion by the direct action of PRL at the ovarian level. However, there is abundant evidence, that PRL is involved directly in regulation of ovarian steroidogenesis, the precise mechanism remains to be discovered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号