首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila melanogaster, the maternally inherited endocellular microbe Wolbachia causes cytoplasmic incompatibility (CI) in crosses between infected males and uninfected females. CI results in a reduction in the number of eggs that hatch. The level of CI expression in this species has been reported as varying from partial (a few eggs fail to hatch) to nonexistent (all eggs hatch). We show that male age in this host species has a large impact on the level of CI exhibited and explains much of this variability. Strong CI is apparent when young males are used in crosses. CI declines rapidly with male age, particularly when males are repeatedly mated. Wolbachia from a Canton S line that was previously reported as not causing CI does in fact induce CI when young males are used in crosses, albeit at a weaker level than in other D. melanogaster strains. The strain differences in CI expression are due to host background effects rather than differences in Wolbachia strains. These results highlight the importance of undertaking crosses with a range of male ages and nuclear backgrounds before ascribing particular host phenotypes to Wolbachia strains.  相似文献   

2.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

3.
M. Turelli  A. A. Hoffmann 《Genetics》1995,140(4):1319-1338
In Drosophila simulans, cytoplasmically transmitted Wolbachia microbes cause reduced egg hatch when infected males mate with uninfected females. A Wolbachia infection and an associated mtDNA variant have spread northward through California since 1986. PCR assays show that Wolbachia infection is prevalent throughout the continental US and Central and South America, but some lines from Florida and Ecuador that are PCR-positive for Wolbachia do not cause incompatibility. We estimate from natural populations infection frequencies and the transmission and incompatibility parameter values that affect the spread of the infection. On average, infected females from nature produce 3-4% uninfected ova. Infected females with relatively low fidelity of maternal transmission show partial incompatibility with very young infected laboratory males. Nevertheless, crosses between infected flies in nature produce egg-hatch rates indistinguishable from those produced by crosses between uninfected individuals. Incompatible crosses in nature produce hatch rates 30-70% as high as those from compatible crosses. Wild-caught infected and uninfected females are equally fecund in the laboratory. Incompatibility decreases with male age, and age-specific incompatibility levels suggest that males mating in nature may often be 2 or 3 weeks old. Our parameter estimates accurately predict the frequency of Wolbachia infection in California populations.  相似文献   

4.
Abstract.  Cytoplasmic incompatibility (CI) induced by maternally inherited Wolbachia bacteria is a potential tool for the suppression of insect pest species with appropriate patterns of infection. The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae) is known to be infected by two strains of Wolbachia pipientis Hertig (Rickettsiales: Rickettsiaceae), w Alb A and w Alb B, throughout its geographical distribution. This infection pattern theoretically restricts the application of CI-based control strategies. However, Wolbachia can be horizontally transferred using embryonic microinjection to generate incompatible transfected lines harbouring a single new strain of Wolbachia. In order to assess the feasibility of this approach, the effects of Wolbachia removal on mosquito fitness need to be clearly evaluated as the removal of natural superinfection is an inescapable step of this approach. Previous research has shown that uninfected females, produced by antibiotic treatment, showed a decrease in fitness compared with those infected with Wolbachia. In this study, the effect of Wolbachia removal on male fitness was investigated. Longevity and reproductive potential (mating competitiveness and sperm capacity) were assessed in both laboratory cages and greenhouses. No differences were observed between uninfected and infected males with respect to longevity, mating rate, sperm capacity and mating competitiveness in either laboratory conditions or greenhouses. The preservation of fitness in males of Ae. albopictus deprived of natural Wolbachia infection is discussed in relation to the development of incompatible insect technique suppression strategies. Finally, the potential application of aposymbiotic males in mark–release–recapture studies is suggested.  相似文献   

5.
The maternally inherited bacterium Wolbachia pipientis infects 25-75% of arthropods and manipulates host reproduction to improve its transmission. One way Wolbachia achieves this is by inducing cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females are inviable. Infected males suffer reduced fertility through CI and reduced sperm production. However, Wolbachia induce lower levels of CI in nonvirgin males. We examined the impact of Wolbachia on mating behaviour in male Drosophila melanogaster and D. simulans, which display varying levels of CI, and show that infected males mate at a higher rate than uninfected males in both species. This may serve to increase the spread of Wolbachia, or alternatively, may be a behavioural adaptation employed by males to reduce the level of CI. Mating at high rate restores reproductive compatibility with uninfected females resulting in higher male reproductive success thus promoting male promiscuity. Increased male mating rates also have implications for the transmission of Wolbachia.  相似文献   

6.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

7.
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.  相似文献   

8.
Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).  相似文献   

9.
Wolbachia strains are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways of manipulating their hosts, the most frequent way being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females as well as in crosses between individuals infected by incompatible Wolbachia strains. The mosquito Culex pipiens exhibits the highest crossing type variability reported so far. Our crossing data support the notion that CI might be driven by at least two distinct genetic units that control the CI functions independently in males and females. Although the molecular basis of CI remains unknown, proteins with ankyrin (ANK) domains represent promising candidates since they might interact with a wide range of host proteins. Here we searched for sequence variability in the 58 ANK genes carried in the genomes of Wolbachia variants infecting Culex pipiens. Only five ANK genes were polymorphic in the genomes of incompatible Wolbachia variants, and none correlated with the CI pattern obtained with 15 mosquito strains (representing 14 Wolbachia variants). Further analysis of ANK gene expression evidenced host- and sex-dependent variations, which did not improve the correlation. Taken together, these data do not support the direct implication of ANK genes in CI determinism.  相似文献   

10.
共生菌Wolbachia引起宿主细胞质不亲和的研究进展   总被引:1,自引:0,他引:1  
Wolbachia 是一类广泛存在于节肢动物以及线虫体内细胞质中呈母系遗传的共生细菌,能够在宿主中产生细胞质不亲和、孤雌生殖、雌性化及杀雄等多种生殖调控作用,其中细胞质不亲和是指被 Wolbachia 感染的雄性个体与未感染的雌性个体(单向不亲和),或者感染不同株系 Wolbachia 的雌性个体(双向不亲和)交配后不能或很少产生后代,或者后代偏雄性的现象。细胞质不亲和作用使感染的雌性个体在种群中具有很大的生殖优势,凭借这种生殖优势,Wolbachia 能够迅速在宿主种群中扩张。细胞质不亲和的机理探索主要集中在细胞学水平上,其中广为接受的精子“修饰”和“拯救”理论认为,精巢中的 Wolbachia 能够修饰宿主的精细胞,使其不能和卵细胞正常融合,但是当母本感染相同的 Wolbachia 时,就能够将“修饰”过的精子细胞“拯救”过来,使其恢复与卵细胞的正常融合。而分子机理上的探索也开始在转录组、基因组和miRNA水平上对部分昆虫展开了研究。影响细胞质不亲和的因素有很多,包括宿主遗传背景、 Wolbachia 株系、Wolbachia 基因型、共生菌密度(浓度、滴度)、雄虫年龄、环境因素以及共生菌在宿主生殖组织的分布等。近年来,人类也应用细胞质不亲和控制害虫(主要是蚊虫)和人类疾病,取得了较好的进展。  相似文献   

11.
Duron O  Weill M 《Heredity》2006,96(6):493-500
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and have evolved several different ways for manipulating their host, the most frequent being cytoplasmic incompatibility (CI). CI leads to embryo death in crosses between infected males and uninfected females, as well as in crosses between individuals infected by incompatible Wolbachia strains. In the mosquito Culex pipiens, previous studies suggested developmental variation in embryos stemming from different incompatible crosses. We have investigated this variation in different incompatible crosses. Unhatched eggs were separated into three classes based upon the developmental stage reached by the embryos. We found that incompatible crosses involving uninfected females produced only embryos whose development was arrested at a very early stage, irrespective of the Wolbachia variant infecting the male. These results differ from other host species where a developmental gradient that could reach late stages of embryogenesis or even living larvae was observed, and indicate a novel peculiarity of CI mechanism in C. pipiens. By contrast, all incompatible crosses with infected C. pipiens females produced embryos of all three classes. The proportion of embryo classes appeared to be associated with the strains involved, suggesting specific CI properties in different incompatible crosses. In addition, the contribution of parental genome was characterized in embryo classes using molecular markers for each chromosome. Embryo phenotypes appeared linked to the paternal chromosomes' contribution, as described in Drosophila simulans. However, this contribution varied according to maternal infection and independently of male factors.  相似文献   

12.
Duron O  Fort P  Weill M 《Heredity》2007,98(6):368-374
Wolbachia are maternally inherited endocellular bacteria, widespread in invertebrates and capable of altering several aspects of host reproduction. Cytoplasmic incompatibility (CI) is commonly found in arthropods and induces hatching failure of eggs from crosses between Wolbachia-infected males and uninfected females (or females infected by incompatible strains). Several factors such as bacterial and host genotypes or bacterial density contribute to CI strength and it has been proposed, mostly from Drosophila data, that older males have a lower Wolbachia load in testes which, thus, induces a lighter CI. Here, we challenge this hypothesis using different incompatible Culex pipiens mosquito strains and show that CI persists at the same intensity throughout the mosquito life span. Embryos from incompatible crosses showed even distributions of abortive phenotypes over time, suggesting that host ageing does not reduce the sperm-modification induced by Wolbachia. CI remained constant when sperm was placed in the spermathecae of incompatible females, indicating that sperm modification is also stable over time. The capacity of infected females to rescue CI was independent of age. Last, the density of Wolbachia in whole testes was highly strain-dependent and increased dramatically with age. Taken together, these data stress the peculiarity of the C.pipiens/Wolbachia interaction and suggest that the bacterial dosage model should be rejected in the case of this association.  相似文献   

13.
Wolbachia bacteria are transmitted from mother to offspring via the cytoplasm of the egg. When mated to males infected with Wolbachia bacteria, uninfected females produce unviable offspring, a phenomenon called cytoplasmic incompatibility (CI). Current theory predicts that ‘sterilization’ of uninfected females by infected males confers a fitness advantage to Wolbachia in infected females. When the infection is above a threshold frequency in a panmictic population, CI reduces the fitness of uninfected females below that of infected females and, consequently, the proportion of infected hosts increases. CI is a mechanism that benefits the bacteria but, apparently, not the host. The host could benefit from avoiding incompatible mates. Parasite load and disease resistance are known to be involved in mate choice. Can Wolbachia also be implicated in reproductive behaviour? We used the two‐spotted spider mite – Wolbachia symbiosis to address this question. Our results suggest that uninfected females preferably mate to uninfected males while infected females aggregate their offspring, thereby promoting sib mating. Our data agrees with other results that hosts of Wolbachia do not necessarily behave as innocent bystanders – host mechanisms that avoid CI can evolve.  相似文献   

14.
Intracellular Wolbachia bacteria are obligate, maternally inherited endosymbionts found frequently in insects and other invertebrates. The evolutionary success of Wolbachia is due in part to an ability to manipulate reproduction. In mosquitoes and many other insects, Wolbachia causes a form of sterility known as cytoplasmic incompatibility (CI). Wolbachia-induced CI has attracted interest as a potential agent for affecting medically important disease vectors. However, application of the approach has been restricted by an absence of appropriate, naturally occurring Wolbachia infections. Here, we report the interspecific transfer of Wolbachia infection into a medically important mosquito. Using embryonic microinjection, Wolbachia is transferred from Drosophila simulans into the invasive pest and disease vector: Aedes albopictus (Asian tiger mosquito). The resulting infection is stably maintained and displays a unique pattern of bidirectional CI in crosses with naturally infected mosquitoes. Laboratory population cage experiments examine a strategy in which releases of Wolbachia-infected males are used to suppress mosquito egg hatch. We discuss the results in relation to developing appropriate Wolbachia-infected mosquito strains for population replacement and population suppression strategies.  相似文献   

15.
The mosquito Aedes pseudoscutellaris (Theobald), a member of the Aedes (Stegomyia) scutellaris complex (Diptera: Culicidae), is an important vector of subperiodic Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae), causing human lymphatic filariasis, on South Pacific islands. Maternal inheritance of filarial susceptibility in the complex has previously been asserted, and larval tetracycline treatment reduced susceptibility; the maternally inherited Wolbachia in these mosquitoes were suggested to be responsible. To investigate the relationship of these two factors, we eliminated Wolbachia from a strain of Ae. pseudoscutellaris by tetracycline treatment, and tested filarial susceptibility of the adult female mosquitoes using Brugia pahangi (Edeson & Buckley). Filarial susceptibility was not significantly different in Wolbachia-free and infected lines of Ae. pseudoscutellaris, suggesting that the Wolbachia in these mosquitoes do not influence vector competence. Crosses between Wolbachia-infected males and uninfected females of Ae. pseudoscutellaris showed cytoplasmic incompatibility (CI), i.e. no eggs hatched, unaffected by larval crowding or restricted nutrient availability, whereas these factors are known to affect CI in Drosophila simulans. Reciprocal crosses between Ae. pseudoscutellaris and Ae. katherinensis Woodhill produced no progeny, even when both parents were Wolbachia-free, suggesting that nuclear factors are responsible for this interspecific sterility.  相似文献   

16.
Fry AJ  Palmer MR  Rand DM 《Heredity》2004,93(4):379-389
Maternally inherited Wolbachia bacteria are extremely widespread among insects and their presence is usually associated with parasitic modifications of host fitness. Wolbachia pipientis infects Drosophila melanogaster populations from all continents, but their persistence in this species occurs despite any strong parasitic effects. Here, we have investigated the symbiosis between Wolbachia and D. melanogaster and found that Wolbachia infection can have significant survival and fecundity effects. Relative to uninfected flies, infected females from three fly strains showed enhanced survival or fecundity associated with Wolbachia infection, one strain showed both and one strain responded positively to Wolbachia removal. We found no difference in egg hatch rates (cytoplasmic incompatibility) for crosses between infected males and uninfected females, although there were fecundity differences. Females from this cross consistently produced fewer eggs than infected females and these fecundity differences could promote the spread of infection just like cytoplasmic incompatibility. More surprising, we found that infected females often had the greatest fecundity when mated to uninfected males. This could also promote the spread of Wolbachia infection, though here the fitness benefits would also help to spread infection when Wolbachia are rare. We suggest that variable fitness effects, in both sexes, and which interact strongly with the genetic background of the host, could increase cytoplasmic drive rates in some genotypes and help explain the widespread persistence of Wolbachia bacteria in D. melanogaster populations. These interactions may further explain why many D. melanogaster populations are polymorphic for Wolbachia infection. We discuss our results in the context of host-symbiont co-evolution.  相似文献   

17.
Wolbachia与昆虫精卵细胞质不亲和   总被引:1,自引:0,他引:1  
Wolbachia是广泛分布在昆虫体内的一类共生菌,能通过多种机制调节宿主的生殖方式,包括诱导宿主精卵细胞质不亲和(CI)、孤雌生殖、雌性化、杀雄等,其中细胞质不亲和为最普遍的表型,即感染Wolbachia的雄性和未感染或感染不同品系Wolbachia的雌性宿主交配后,受精卵不能正常发育,在胚胎期死亡。多数CI胚胎在第1次分裂时,来自父本的染色质浓缩缺陷,导致父本遗传物质无法正常分配到子细胞中,因而引起胚胎死亡。守门员模型认为,产生CI可能需要有两种因子,其中之一使得精子发生修饰改变,导致受精后雄性原核发育滞后。第2种因子可能与Wolbachia的原噬菌体有关,在胚胎发育后期导致胚胎死亡。近期的研究已发现,在Wolbachia感染的宿主中,一些与生殖细胞发生和繁殖相关基因的表达发生了显著改变,Wolbachia可能因此对宿主的生殖产生重大影响,进而导致CI的产生。本文主要综述了CI的细胞学表型、解释CI的模型及其分子机理,向读者展示一个小小的细菌是如何通过精妙的策略影响昆虫宿主的繁殖,从而实现其自身的生存和传播的。  相似文献   

18.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

19.
Presgraves DC 《Genetics》2000,154(2):771-776
Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm.  相似文献   

20.
Bordenstein SR  Werren JH 《Heredity》2007,99(3):278-287
Most insect groups harbor obligate bacterial symbionts from the alpha-proteobacterial genus Wolbachia. These bacteria alter insect reproduction in ways that enhance their cytoplasmic transmission. One of the most common alterations is cytoplasmic incompatibility (CI) - a post-fertilization modification of the paternal genome that renders embryos inviable or unable to complete diploid development in crosses between infected males and uninfected females or infected females harboring a different strain. The parasitic wasp species complex Nasonia (N. vitripennis, N. longicornis and N. giraulti) harbor at least six different Wolbachia that cause CI. Each species have double infections with a representative from both the A and B Wolbachia subgroups. CI relationships of the A and B Wolbachia of N. longicornis with those of N. giraulti and N. vitripennis are investigated here. We demonstrate that all pairwise crosses between the divergent A strains are bidirectionally incompatible. We were unable to characterize incompatibility between the B Wolbachia, but we establish that the B strain of N. longicornis induces no or very weak CI in comparison to the closely related B strain in N. giraulti that expresses complete CI. Taken together with previous studies, we show that independent acquisition of divergent A Wolbachia has resulted in three mutually incompatible strains, whereas codivergence of B Wolbachia in N. longicornis and N. giraulti is associated with differences in CI level. Understanding the diversity and evolution of new incompatibility strains will contribute to a fuller understanding of Wolbachia invasion dynamics and Wolbachia-assisted speciation in certain groups of insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号