首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), Escherichia coli amine oxidase (ECAO), and Pichia pastoris lysyl oxidase (PPLO). Reactions of 1,4-diamino-2-butyne with selected amine oxidases were also examined. Each substrate analog contains a functional group that chemical precedent suggests could produce mechanism-based inactivation. Striking differences in selectivity and rates of inactivation were observed. For example, between two closely related plasma enzymes, BPAO is more sensitive than EPAO to 1 and 3, while the reverse is true for 2 and 4. In general, inactivation appears to arise in some cases from TPQ cofactor modification and in other cases from alkylation of protein residues in a manner that blocks access of substrate to the active site. Notably, 1 completely inhibits AGAO at stoichiometric concentrations and is not a substrate, but is an excellent substrate of PSAO and inhibition is observed only at very high concentrations. Structural models of 1 in Schiff base linkage to the TPQ cofactor in AGAO and PSAO (for which crystal structures are available) reveal substantial differences in the degree of interaction of bound 1 with side-chain residues, consistent with the widely divergent activities. Collectively, these results suggest that the development of highly selective amine oxidase inhibitors is feasible.  相似文献   

2.
Bovine plasma amine oxidase (BPAO) was previously shown to be irreversibly inhibited by propargylamine and 2-chloroallylamine. 1,4-Diamine versions of these two compounds are here shown to be highly potent inactivators, with IC50 values near 20 microM. Mono-N-alkylation or N,N-dialkylation greatly lowered the inactivation potency in every case, whereas the mono-N-acyl derivatives were also weaker inhibitors and enzyme activity was recoverable. The finding that the bis-primary amines 1,4-diamino-2-butyne (a known potent inhibitor of diamine oxidases) and Z-2-chloro-1,4-diamino-2-butene are potent inactivators of BPAO is suggestive of unexpected similarities between plasma amine oxidase and the diamine oxidases and implies that it may be unwise to attempt to develop selective inhibitors of diamine oxidase using a diamine construct.  相似文献   

3.
2-Butyne-1,4-diamine (DABI) is a mechanism-based inhibitor of copper-containing plant amine oxidases; the number of turnovers that leads to enzyme inactivation is approximately 20. The product of DABI oxidation is a very reactive aminoallene that reacts with an essential nucleophilic group at the enzyme active site, forming a covalently bound pyrrole and producing an inactive enzyme. The inactivated enzyme shows a new absorption maximum at 295 nm and gives coloured derivatives with p-dimethylaminobenzaldehyde and p-dimethylaminocinnamaldehyde that are spectrally similar to the products of pyrrole treated with the above reagents. Resonance Raman spectra of the p-dimethylaminobenzaldehyde adduct of pyrrole and the inactivated enzyme show very high degree of similarity, supporting the idea that the product of inactivation is indeed a bound pyrrole. The bound pyrrole is formed already in the anaerobic step of the reaction, while the topa semiquinone radical is not affected, as shown by the EPR and stopped-flow absorption measurements. Peptides containing the DABI binding site were obtained by proteolysis of inactivated enzyme, isolated by HPLC and analysed by amino acid sequencing and MS. The crystal structure of the amine oxidase from pea has been determined; inhibition is caused mainly by the highly reactive DABI product, 4-amino-2-butynal, binding to a nucleophilic residue at the entrance to the substrate channel. As other DABI labelled peptides were also found and no free DABI product was detected by MS after complete inhibition of the enzyme, it is likely that the DABI product binds also to other solvent exposed nucleophilic residues on the enzyme surface.  相似文献   

4.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

5.
The time courses of the synthesis of diamine oxidase in pea plants grown for 14 days either in the light or in the dark are similar with the highest increase in activity occurring in the cotyledons and in the shoots during the first 6 to 8 days. Plants grown in the dark showed a 2- to 3-fold higher enzyme activity than plants grown in the light. Pea diamine oxidase could bein vivo efficiently inhibited by substrate analogues 1,4-diamino-2-butanone and 1,5-diamino-3-pentanone. The first compound inhibited proportionally to its concentration the growth of etiolated pea plants, but its instability makes an unequivocal interpretation of the results difficult. On the other hand, 1,5-diamino-3-pentanone a stable and more efficient diamine oxidase inhibitor depressed the growth of pea seedlings only at concentrations as high as 5 mM and 10 mM, at which the growth of cress seedlings not containing diamine oxidase was also strongly depressed. The results obtained indicate that tryptamine oxidation catalyzed by diamine oxidase is not involved in the main metabolic pathway leading from tryptophan to indoleacetate in pea plants.  相似文献   

6.
The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate (Km, 0.95 mM). L-Cysteine is a competitive inhibitor of the enzyme (Ki, 0.65 mM). The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme (Esaki et al., J. Biol. Chem. 257:4386-4391, 1982). However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar.  相似文献   

7.
The paper reports a study on the reactions of grass pea (Lathyrus sativus) amine oxidase (GPAO) with several aliphatic diamines. The influence of the chain length and of unsaturations in the molecules was examined. Kinetic measurements confirmed that trans-, i.e., (E)-2-butene-1,4-diamine (TDABE) and cis-, i.e., (Z)-2-butene-1,4-diamine (CDABE) could be classified as good substrates. Propane-1,3-diamine (DAP) and propene-1,3-diamine (DAPE) were only weakly oxidized, whereas 1,3-diamino-2-propanol (DAPL) was not utilized as a substrate. Contrary to the inactivator 2-butyne-1,4-diamine (DABI), DAPE was shown to be only a competitive inhibitor. DAP itself did not inhibit the catalytic activity. Irreversible inhibition of the activity occurred only after the incubation of GPAO with DABI; other diamines were without this effect. Differential pulse polarography and chromatofocusing confirmed that the aminoaldehyde product of DABI oxidation binds to the enzyme. Activity assay of pea aminoaldehyde dehydrogenase enabled us to detect the products of the oxidation of TDABE, CDABE, and DAP by GPAO. As the product of DAP oxidation, 3-amino-propanal (APAL) was detected by mass spectrometry and confirmed to be a potent noncompetitive inhibitor of GPAO. The absorption changes that occurred in the course of the reaction of GPAO with the diamines were investigated using rapid-scanning spectrophotometry. DABI, TDABE, CDABE, DAP, and DAPE reacted with GPAO providing characteristic maxima of the Cu(I)-semiquinolamine species that is formed in the catalytic cycle. The results presented here confirm that with the exception of DAPL, all the studied diamines could be classified as GPAO substrates, but only DABI can be considered as a mechanism-based inhibitor.  相似文献   

8.
In the present work we compare the binding subsites of inhibitors from a series of alkaloids and aminoketones on pea and sainfoin diamine oxidase (EC 1.4.3.6; DAO) by the graphical method. As standard competitive inhibitors we have chosen oxoanalogs of the substrates, namely, 1,4-diamino-2-butanone and 1,5-diamino-3-pentanone, which were compared with the alkaloids (+)-sedamine, (-)-norallosedamine, (-)-norsedamine, L-lobeline, cinchonine and aromatic analogs of aliphatic aminoketones such as 1-amino-3-phenyl-3-propanone and 1-amino-3-phenyl-2-propanone. In the case of pea DAO all inhibitors compete for the same subsites with 1,4-diamino-2-butanone and 1,5-diamino-3-pentanone (alpha = infinity). In the case of sainfoin enzyme they are bound to other subsites and the interaction constants (0 < alpha < 1) point to a positive attraction between these two types of inhibitors. With sainfoin DAO, 1-amino-3-phenyl-3-propanone is bound into the same subsite as 1,4-diamino-2-butanone. Cinchonine and 1-amino-3-phenyl-3-propanone are bound to two different subsites and the value of the interaction constant (1 < alpha < infinity) shows repulsion between the inhibitors.  相似文献   

9.
N-Bromoacetylethanolamine phosphate and 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate have been tested in order to study the hexose phosphate binding sites of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. N-Bromoacetylethanolamine phosphate is a competitive inhibitor with respect to fructose-6-P (Ki = 0.24 mM) and a noncompetitive inhibitor with ATP (Ki = 0.8 mM). The reagent inactivates fructose-6-P,2-kinase but not fructose-2,6-bisphosphatase, and the inactivation is prevented by fructose-6-P. The inactivation reaction follows pseudo first-order kinetics to completion and with increasing concentrations of N-bromoacetylethanolamine phosphate a rate saturation effect is observed. The concentration of the reagent giving the half-maximum inactivation is 2.2 mM and the apparent first order rate constant is 0.0046 s-1. The enzyme alkylated by N-bromoacetylethanolamine-P has lost over 90% of the kinase activity, retains nearly full activity of fructose-2,6-bisphosphatase, and its inhibition by fructose-6-P is not altered. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate is also a competitive inhibitor of fructose-6-P,2-kinase with respect to fructose-6-P in the forward reaction and fructose-2,6-P2 in the reverse direction. This reagent inhibits 93% of fructose-6-P,2-kinase but activates fructose-2,6-bisphosphatase 3.7-fold. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate alters the fructose-2,6-P2 saturation kinetic curve from negative cooperativity to normal Michaelis-Menten kinetics with K0.5 of 0.8 microM. The reagent, however, has no effect on the fructose-6-P inhibition of the phosphatase. These results strongly suggest that hexose phosphate binding sites of fructose-6-P,2-kinase and fructose-2,6-bisphosphatase are distinct and located in different regions of this bifunctional enzyme.  相似文献   

10.
Spermine oxidase (SMO) is a recently described flavoenzyme belonging to the class of polyamine oxidases (PAOs) and participating in the polyamine metabolism in animal cells. In this paper we describe the expression, purification, and characterization of the catalytic properties of a recombinant mouse SMO (mSMO). The purified enzyme has absorbance peaks at 457nm (epsilon=11mM(-1)cm(-1)) and 378nm, shows a molecular mass of approximately 63kDa, and has K(m) and k(cat) values of 170microM and 4.8s(-1), using spermine as substrate; it is unable to oxidize other free or acetylated polyamines. The mechanism-based PAO inhibitor N,N(1)-bis(2,3-butadienyl)-1,4-butanediamine (MDL72,527) acts as a competitive inhibitor of mSMO, with an apparent dissociation constant K(i)=63microM. If incubated for longer times, MDL72,527 yields irreversible inhibition of the enzyme with a half-life of 15min at 100microM MDL72,527. The mMSO catalytic mechanism, investigated by stopped flow, is consistent with a simple four-step kinetic scheme.  相似文献   

11.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

12.
Several compounds containing an amidrazone moiety are known to be potent inhibitors of lipoxygenase-1 activity from soybeans (L-1) with IC(50)-values in the range of 10 microM to 38 nM. Recently it was proposed that phenylhydrazones act as irreversible mechanism-based inhibitors of lipoxygenases. Because of the structural similarities between both compounds it was assumed for the amidrazones to affect the lipoxygenase reaction in the same suicide manner. Cyclisation of the amidrazone moiety to the corresponding triazoline should yield compounds without substrate properties. However, they are still able to inactivate the enzyme. The inhibition of L-1 from soybeans by two representative compounds of a series of amidrazones and triazolines has been characterised as a slow, tight-binding interaction via a two-step mechanism. Dialysis experiments indicate the reversible nature of interaction of the amidrazone with the ferrous enzyme while the ferric enzyme was irreversibly inactivated. In contrast, the interaction of the triazoline with both the ferric and ferrous species of the enzyme was completely reversible which demonstrates the noncovalent and reversible mode of binding and inactivation. The triazoline was found not to be a substrate of the dioxygenase reaction of lipoxygenase whereas the amidrazone is only a very poor substrate of the enzymatic oxidation reaction. The presented results point out the inhibition of L-1 by amidrazones and triazolines to fall into the same kinetic classification. Therefore it is obvious that the inhibition of L-1 by these compounds cannot be attributed to a truly mechanism-based inactivation.  相似文献   

13.
Inducible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910 catalyzes the decarboxylation of pyrrole-2-carboxylate to stoichiometric amounts of pyrrole and CO2. A unique feature of the homodimeric enzyme is its requirement for an organic acid such as acetate, propionate, butyrate or pimelate. A catalytic mechanism including a cofactor function of the organic acid was proposed. Due to an equilibrium constant of 0.3–0.4 M, the enzyme also catalyzes the reverse carboxylation of pyrrole after the addition of bicarbonate. For the synthesis of pyrrole-2-carboxylate, the reverse reaction was optimized and the equilibrium shifted towards the carboxylate. The product yield was 230 mM (25.5 g/l) pyrrole-2-carboxylate from 300 mM pyrrole in a batch reaction and 325 mM (36.1 g/l) from 400 mM pyrrole in a fed batch reaction, using both whole cells and the purified enzyme in a pH 8.0 reaction mixture with bicarbonate saturation of 1.9 M.  相似文献   

14.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

15.
Zhao G  Qu J  Davis FA  Jorns MS 《Biochemistry》2000,39(46):14341-14347
Monomeric sarcosine oxidase (MSOX) catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound flavin adenine dinucleotide (FAD). The present study demonstrates that N-(cyclopropyl)glycine (CPG) is a mechanism-based inhibitor. CPG forms a charge transfer complex with MSOX that reacts under aerobic conditions to yield a covalently modified, reduced flavin (lambda(max) = 422 nm, epsilon(422) = 3.9 mM(-1) cm(-1)), accompanied by a loss of enzyme activity. The CPG-modified flavin is converted at an 8-fold slower rate to 1,5-dihydro-FAD (EFADH(2)), which reacts rapidly with oxygen to regenerate unmodified, oxidized enzyme. As a result, CPG-modified MSOX reaches a CPG-dependent steady-state concentration under aerobic conditions and reverts back to unmodified enzyme upon removal of excess reagent. No loss of activity is observed under anaerobic conditions where EFADH(2) is formed in a reaction that goes to completion at low CPG concentrations. Aerobic denaturation of CPG-modified enzyme yields unmodified, oxidized flavin at a rate similar to the anaerobic denaturation reaction, which yields 1,5-dihydro-FAD. The CPG-modified flavin can be reduced with borohydride, a reaction that blocks conversion to unmodified flavin upon removal of excess CPG or enzyme denaturation. The possible chemical mechanism of inactivation and structure of the CPG-modified flavin are discussed.  相似文献   

16.
Trypanothione reductase of Trypanosoma cruzi is a key enzyme in the antioxidant metabolism of the parasite. Here we report on the enzymic and pharmacological properties of trypanothione reductase using glutathionylspermidine disulfide as a substrate. 1. Both pH optimum (7.5) and the ionic strength optimum (at 30 mM) are unusually narrow for this enzyme. 40 mM Hepes, 1 mM EDTA, pH 7.5 was chosen as a standard assay buffer because in this system the kcat/Km ratio had the highest values for both natural substrates, glutathionylspermidine disulfide (2.65 x 10(6) M-1 s-1) and trypanothione disulfide (4.63 x 10(6) M-1 s-1). 2. Using the standardized assay, trypanothione reductase and the phylogenetically related host enzyme, human glutathione reductase, were studied as targets of inhibitors. Both enzymes, in their NADPH-reduced forms, were irreversibly modified by the cytostatic agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Nifurtimox, the drug used in the treatment of Chagas' disease, is a stronger inhibitor of glutathione reductase (Ki = 40 microM) than of trypanothione reductase (IC50 = 200 microM). 3. Of the newly synthesized trypanocidal compounds [Henderson, G. B., Ulrich, P., Fairlamb, A. H., Rosenberg, I., Pereira, M., Sela, M. & Cerami, A. (1988) Proc. Natl Acad. Sci., 85, 5374-5378] a nitrofuran derivative, 2-(5-nitro-2-furanylmethylidene)-N,N'-[1,4-piperazinediylbis (1,3-propanediyl)]bishydrazinecarboximidamide tetrahydrobromide, was found to be a better inhibitor for trypanothione reductase (Ki = 0.5 microM) than for glutathione reductase (IC50 = 10 microM). A naphthoquinone derivative, 2,3-bis[3-(2-amidinohydrazono)-butyl]-1,4-naphthoquinone dihydrochloride, turned out to be both an inhibitor (IC50 = 1 microM) and an NADPH-oxidation-inducing substrate (Km = 14 microM). This effect was not observed with human glutathione reductase. Such compounds which lead to oxidative stress by more than one mechanism in the parasite are promising starting points for drug design based on the three-dimensional structures of glutathione and trypanothione reductases.  相似文献   

17.
Feng L  Kirsch JF 《Biochemistry》2000,39(10):2436-2444
L-Vinylglycine (L-VG) has been shown to be a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase [Satoh, S., and Yang, S. F. (1989) Plant Physiol. 91, 1036-1039] as well as of other pyridoxal phosphate-dependent enzymes. This report demonstrates that L-VG is primarily an alternative substrate for the enzyme. The L-VG deaminase activity of ACC synthase yields the products alpha-ketobutyrate and ammonia with a k(cat) value of 1.8 s(-1) and a K(m) value of 1.4 mM. The k(cat)/K(m) of 1300 M(-1) s(-1) is 0.17% that of the diffusion-controlled reaction with the preferred substrate, S-adenosyl-L-methionine. The enzyme-L-VG complex partitions to products 500 times for every inactivation event. The catalytic mechanism proceeds through a spectrophotometrically detected quinonoid with lambda(max) of 530 nm, which must rearrange to a 2-aminocrotonate aldimine to yield final products. Alternative mechanisms for the inactivation reaction are presented, and the observed kinetics for the full reaction course are satisfactorily modeled by kinetic simulation. The inactive enzyme is an aldimine with lambda(max) of 432 nm. It is resistant to NaBH(3)CN but is reduced by NaBH(4). ACC synthase is now expressed in Pichia pastoris with an improved yield of 10 mg/L.  相似文献   

18.
1. A method is described for the purification of a form of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) that probably differs from that of the native enzyme. 2. The kinetics of the reaction catalysed by 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (tryptophan) shows that the reaction proceeds via a ping-pong bi-bi mechanism, with activation by phosphoenolpyruvate (P-Prv), the first substrate, and inhibition by erythrose 4-phosphate (Ery-P) the second substrate. At low substrate concentrations, KP-Prv is 0.1 mM and KEry-P is 0.13 mM. 3. The substrates phosphoenolpyruvate and erythrose 4-phosphate and the product inorganic phosphate can protect the purified enzyme against heat denaturation, whereas the inhibitor, tryptophan, has no effect, although it binds to the enzyme in the absence of other ligands. 4. Product inhibition by inorganic phosphate is linear non-competitive with respect to phosphoenolpyruvate (Ki, slope = 22 mM and Ki, intercept = 54 mM) and substrate-linear competitive with respect to erythrose 4-phosphate (Ki, slope = 25 mM). 5. The enzyme has an activity optimum at pH 7.3 and a tryptophan inhibition optimum at pH 6.4, Trp 0.5 is 4 microM. Inhibition by tryptophan is non-competitive with respect to phosphoenolpyrovate and substrate-parabolic competitive with respect to erythrose 4-phosphate. 6. The role of the enzyme in metabolic regulation is discussed.  相似文献   

19.
1,4-benzoquinone (BQ) and 2,5-dimethyl-1,4-benzoquinone (DMBQ) were studied as inhibitors of jack bean urease in 50 mM phosphate buffer, pH 7.0. The mechanisms of inhibition were evaluated by progress curves studies and steady-state approach to data achieved by preincubation of the enzyme with the inhibitor. The obtained reaction progress curves were time-dependent and characteristic of slow-binding inhibition. The effects of different concentrations of BQ and DMBQ on the initial and steady-state velocities as well as the apparent first-order velocity constants obeyed the relationships of two-step enzyme-inhibitor interaction, qualified as mechanism B. The rapid formation of an initial BQ-urease complex with an inhibition constant of Ki = 0.031 mM was followed by a slow isomerization into the final BQ-urease complex with the overall inhibition constant of Ki* = 4.5 x 10(-5) mM. The respective inhibition constants for DMBQ were Ki = 0.42 mM, Ki* = 1.2 x 10(-3) mM. The rate constants of the inhibitor-urease isomerization indicated that forward processes were rapid in contrast to slow reverse reactions. The overall inhibition constants obtained by the steady-state analysis were found to be 5.1 x 10(-5) mM for BQ and 0.98 x 10(-3) mM for DMBQ. BQ was found to be a much stronger inhibitor of urease than DMBQ. A test, based on reaction with L-cysteine, confirmed the essential role of the sulfhydryl group in the inhibition of urease by BQ and DMBQ.  相似文献   

20.
Three substrate analogs of dopamine beta-hydroxylase, viz. 2-X-3-(p-hydroxyphenyl)-1- propenes (where X = Br, Cl, H), have been synthesized, and all behave as substrates requiring O2 and ascorbate for the enzyme-catalyzed hydroxylation reaction. The products have been characterized by mass spectrometry as the respective 2-X-3-hydroxy-3-(p-hydroxyphenyl)-1- propenes . The relative kcat values for these compounds at pH 5.5, 0.25 mM O2 are 49 min-1 (2-H), 8.6 min-1 (2-Cl), and 7.0 min-1 (2-Br). All three compounds have the characteristics of mechanism-based inhibitors of dopamine beta-hydroxylase since incubation of enzyme with these compounds under turnover conditions leads to a time-dependent loss of activity. The kinact values at pH 5.5, 0.25 mM O2 are 0.08, 0.20, and 0.51 min-1, respectively, for the 2-Br-, 2-Cl-, and 2-H-substituted analogs. No reactivation was observed after exhaustive dialysis of enzyme inactivated by 2-Br-3-(p-hydroxyphenyl)-1-propene, suggesting irreversible inactivation of dopamine beta-hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号