首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dental-unit water systems (DUWS) harbor bacterial biofilms, which may serve as a haven for pathogens. The aim of this study was to investigate the microbial load of water from DUWS in general dental practices and the biofouling of DUWS tubing. Water and tube samples were taken from 55 dental surgeries in southwestern England. Contamination was determined by viable counts on environmentally selective, clinically selective, and pathogen-selective media, and biofouling was determined by using microscopic and image analysis techniques. Microbial loading ranged from 500 to 105 CFU · ml−1; in 95% of DUWS water samples, it exceeded European Union drinking water guidelines and in 83% it exceeded American Dental Association DUWS standards. Among visible bacteria, 68% were viable by BacLight staining, but only 5% of this “viable by BacLight” fraction produced colonies on agar plates. Legionella pneumophila, Mycobacterium spp., Candida spp., and Pseudomonas spp. were detected in one, five, two, and nine different surgeries, respectively. Presumptive oral streptococci and Fusobacterium spp. were detected in four and one surgeries, respectively, suggesting back siphonage and failure of antiretraction devices. Hepatitis B virus was never detected. Decontamination strategies (5 of 55 surgeries) significantly reduced biofilm coverage but significantly increased microbial numbers in the water phase (in both cases, P < 0.05). Microbial loads were not significantly different in DUWS fed with soft, hard, deionized, or distilled water or in different DUWS (main, tank, or bottle fed). Microbiologically, no DUWS can be considered “cleaner” than others. DUWS deliver water to patients with microbial levels exceeding those considered safe for drinking water.  相似文献   

2.
Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.  相似文献   

3.
Heavy metal‐contaminated, pH 6 mine water discharge created new streams and iron‐rich terraces at a creek bank in a former uranium‐mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron‐oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high‐metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella‐like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6‐month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% of Bacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and ‘Ferrovum myxofaciens’. Classical 16S rRNA gene cloning showed that 96% of the Gallionella‐related sequences had ≥97% identity to the putatively metal‐tolerant ‘Gallionella capsiferriformans ES‐2’, in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R‐1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM‐energy‐dispersive X‐ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52–61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of ‘G. capsiferriformans’ and biogenic iron oxides in slightly acidic but highly metal‐contaminated freshwater environments.  相似文献   

4.
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems.  相似文献   

5.
A most-probable-number (MPN) technique was evaluated for detecting and enumerating Pseudomonas aeruginosa in water and wastewater. Both the presumptive and confirmatory media, as described in the 13th edition of Standard Methods for the Examination of Water and Wastewater, as well as modifications of these media were included in evaluations. Various samples of water were tested, namely chlorinated tap water, creek water, and influent to a wastewater treatment plant. Modified media repeatedly gave higher estimated MPNs of P. aeruginosa than media listed in Standard Methods. P. aeruginosa was detected and recovered from all creek water and wastewater samples, but not from tap water samples tested. This organism was determined to be present in as large numbers as the fecal coliforms and in even greater quantities than the fecal streptococci in all samples, whenever MPN estimations were determined from those positive tubes containing the modified confirmatory medium.  相似文献   

6.
The ongoing global spread of “exotic” farm animals, such as water buffaloes, which carry their native sets of viruses, may bear unknown risks for the animals, into whose ecological niches the former are introduced and vice versa. Here, we report on the occurrence of malignant catarrhal fever (MCF) on Swiss farms, where “exotic” water buffaloes were kept together with “native” animals, i.e. cattle, sheep, and goats. In the first farm with 56 water buffaloes, eight cases of MCF due to ovine herpesvirus-2 (OvHV-2) were noted, whereas additional ten water buffaloes were subclinically infected with either OvHV-2 or caprine herpesvirus-2 (CpHV-2). On the second farm, 13 water buffaloes were infected with CpHV-2 and two of those succumbed to MCF. In neither farm, any of the two viruses were detected in cattle, but the Macaviruses were present at high prevalence among their original host species, sheep and goats, respectively. On the third farm, sheep were kept well separated from water buffaloes and OvHV-2 was not transmitted to the buffaloes, despite of high prevalence of the virus among the sheep. Macavirus DNA was frequently detected in the nasal secretions of virus-positive animals and in one instance OvHV-2 was transmitted vertically to an unborn water buffalo calf. Thus, water buffaloes seem to be more susceptible than cattle to infection with either Macavirus; however, MCF did not develop as frequently. Therefore, water buffaloes seem to represent an interesting intermediate-type host for Macaviruses. Consequently, water buffaloes in their native, tropic environments may be vulnerable and endangered to viruses that originate from seemingly healthy, imported sheep and goats.  相似文献   

7.
Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk''s metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 μm h−1). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger (∼100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.  相似文献   

8.
The endogenous gibberellins (GAs) of pollen of Pinus attenuata, P. coulteri, and P. ponderosa were bioassayed at hour 0, 3, 15, 24, 48 and 72 of germination. Dormant pollen showed relatively high GA activity throughout the elution spectrum (i.e. ranging from relatively nonpolar to highly polar). The maximum GA activity was obtained at hour 15 in more polar regions and especially in the zone corresponding to GA3 (for P. attenuata estimated as 250 micrograms of GA3/kilogram pollen). It is probable that the “nonpolar” GAs present in high quantities in dormant pollen and in early stages of germination were converted to “more polar” GAs as germination progressed. The amount of all GAs decreased after hour 15 of germination and by hour 72 no GAs could be detected. Among the species tested P. attenuata showed the highest over-all GA activity.  相似文献   

9.
A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine (“Ferrovum myxofaciens” strain P3G) have been elucidated. “F. myxofaciens” is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. “F. myxofaciens” can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. “F. myxofaciens” and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of “F. myxofaciens” and other Betaproteobacteria, a new family, “Ferrovaceae,” and order, “Ferrovales,” within the class Betaproteobacteria are proposed. “F. myxofaciens” is the first extreme acidophile to be described in the class Betaproteobacteria.  相似文献   

10.
The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothiobacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria. The genus Gallionella comprised 18.7 to 28.6% of all clones in the three red water libraries. Quantitative real-time PCR analysis showed that the 16S rRNA gene copy concentration of Gallionella spp. was between (4.1 ± 0.9) × 107 (mean ± standard deviation) and (1.6 ± 0.3) × 108 per liter in red water, accounting for 13.1% ± 2.9% to 17.2% ± 3.6% of the total Bacteria spp. in these samples. By comparison, the percentages of Gallionella spp. in the normal water samples were 0.1% or lower (below the limit of detection), suggesting an important role of Gallionella spp. in the formation of red water.On occasion, extensive precipitation of iron oxides in drinking water distribution systems manifests as red water at the tap and results in serious deterioration of water quality, with undesirable esthetic and health effects (18, 40, 46). The abundance of ferrous iron in source water or the acceleration of corrosion of iron pipelines after the loosening of chemical and microbial films from the interior surfaces of distribution systems might be the sources of iron oxides in red water. Switching of water sources has been observed to be associated with red water due to disruption of the delicate chemical equilibrium in water supply systems (18). High concentrations of anions, particularly sulfate ions, have been recognized as a causative agent of red water in many cases, reflected in high values on indices such as the Larson-Skold index (18, 29). Other physicochemical factors, such as insufficient disinfection residue, extended hydraulic retention time, low levels of dissolved oxygen, high temperature, low alkalinity, and high chloride concentration, have also been implicated in the emergence of red water (18, 46).In addition to physicochemical factors, microorganisms may also participate in the unique phenomenon of red water. Drinking water distribution systems are a unique niche for microorganisms, despite oligotrophic conditions and the presence of free or combined chlorine (3, 18). Phylogenetically diverse bacterial groups can inhabit the bulk water or biofilms attached to pipes. Culture-based and independent analyses have revealed that members of the class Proteobacteria, including the Alpha-, Beta-, and Gammaproteobacteria, are typically the most abundant bacterial group in water distribution systems, followed by bacterial phyla such as Actinobacteria, Firmicutes, and Bacteroidetes (13, 38). Bacteria inhabiting distribution systems mainly fill functions of diverse carbon source utilization and nitrification, as well as microbial corrosion (3). Meanwhile, during periods of red water, abundant ferrous iron in the bulk water creates favorable conditions for the growth of bacteria in the distribution systems, as this iron scavenges residual chlorine and serves as an energy source for iron-oxidizing bacteria. Some neutrophilic iron oxidizers, such as Gallionella spp. and Leptothrix ochracea, which have occasionally been observed in association with red water events because of their distinct morphology, can promote the precipitation of iron oxides by converting ferrous iron to ferric iron (9, 46). As very little energy can be generated during the oxidation of ferrous to ferric iron, a large quantity of iron needs to be oxidized to support the growth of lithotrophic iron oxidizers. It has been calculated that the ratio of iron to the weight of bacterial cell material could be up to approximately 450 to 500, assuming that the oxidation of ferrous iron provides the sole energy for the synthesis of cell material (9). Emerson et al. have found that the oxidation rate of ferrous iron could be up to 600 to 960 nmol per h per cm3 of mat material that contained up to 109 bacterial cells, most of which were iron oxidizers like Gallionella spp. and Leptothrix ochracea, and the oxidation rate of ferrous iron by iron oxidizers could be as high as four times that of dissolved oxygen (15). These neutrophilic iron oxidizers have been even utilized to remove iron from groundwater by passage of preaerated water through sand filters during drinking water treatment (24, 36). Thus, iron-oxidizing species might play an important role in red water events. With the exception of specific neutrophilic iron oxidizers (e.g., Gallionella spp. and Leptothrix ochracea), the whole microbial community composition in red water and the presence of potentially functional groups, including neutrophilic iron-oxidizing bacteria in red water, is poorly defined, possibly because the appearance of this unique phenomenon in real distribution systems is so irregular. To better understand the mechanisms that drive the emergence of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distribution system of Beijing during a large-scale red water event were determined using several molecular methods. The results of this comprehensive investigation of the biological component of red water will provide valuable information for those managing red water events in water distribution systems.  相似文献   

11.
The surfaces of water distribution mains and suspended particulate matter from drinking water were examined by using scanning electron microscopy to investigate the nature and extent of association of microorganisms with these surfaces. In addition, X-ray energy-dispersive microanalysis was used to determine the elemental constitution of the pipe surface. Though distributed sparsely and randomly along the pipe surface, a variety of morphologically distinguishable bacteria-like structures and microcolonies were observed. The morphologies of the individual cells varied form chain-forming cocci to filamentous and prosthecate cell types. The iron-oxidizing bacterium Gallionella, recognized by its characteristic helical stalks, was observed both in water samples and attached to pipe surfaces. Attachment of some microbes to the pipe surface was apparently mediated by extracellular fibrillar appendages. Large numbers of rod-shaped bacteria were also evident adhering to the surfaces of suspended detritus or silt particles recovered from water samples by filtration. X-ray energy scans of the pipe surface revealed the presence of five major elemental constituents including silicon, phosphorous, sulfur, calcium, and iron. Smaller quantities of the elements zinc, magnesium, aluminum, potassium, and manganese were also detected. The public health significance of sessile microbial communities in drinking-water distribution systems is discussed.  相似文献   

12.
We constructed a small flow chamber in which suboxic medium containing 60 to 120 μM FeCl2 flowed up through a sample well into an aerated reservoir, thereby creating an suboxic-oxic interface similar to the physicochemical conditions that exist in natural iron seeps. When microbial mat material from the Marselisborg iron seep that contained up to 109 bacterial cells per cm3 (D. Emerson and N. P. Revsbech, Appl. Environ. Microbiol. 60:4022-4031, 1994) was placed in the sample well of the chamber, essentially all of the Fe2+ flowing through the sample well was oxidized at rates of up to 1,200 nmol of Fe2+ oxidized per h per cm3 of mat material. The oxidation rates of samples of the mat that were pasteurized prior to inoculation were only about 20 to 50% of the oxidation rates of unpasteurized samples. Sodium azide also significantly inhibited oxidation. These results suggest that at least 50% and up to 80% of the Fe oxidation in the chamber were actively mediated by the microbes in the mat. It also appeared that Fe stimulated the growth of the community since chambers fed with FeCl2 accumulated masses of either filamentous or particulate growth, both in the sample well and attached to the walls of the chamber. Control chambers that did not receive FeCl2 showed no sign of such growth. Furthermore, after 4 to 5 days the chambers fed with FeCl2 contained 35 to 75% more protein than chambers not supplemented with FeCl2. Leptothrix ochracea and, to a lesser extent, Gallionella spp. were responsible for the filamentous growth, and the sheaths and stalks, respectively, of these two organisms harbored large numbers of Fe-encrusted, nonappendaged unicellular bacteria. In chambers where particulate growth predominated, the unicellular bacteria alone appeared to be the primary agents of iron oxidation. These results provide the first clear evidence that the “iron bacteria” commonly found associated with neutral-pH iron seeps are responsible for most of the iron oxidation and that the presence of ferrous iron appears to stimulate the growth of these organisms.  相似文献   

13.
We assessed population structure and the spatio‐temporal pattern of diversification in the Glossy Antshrike Sakesphorus luctuosus (Aves, Thamnophilidae) to understand the processes shaping the evolutionary history of Amazonian floodplains and address unresolved taxonomic controversies surrounding its species limits. By targeting ultraconserved elements (UCEs) from 32 specimens of S. luctuosus, we identified independent lineages and estimated their differentiation, divergence times, and migration rates. We also estimated current and past demographic histories for each recovered lineage. We found evidence confirming that S. luctuosus consists of a single species, comprising at least four populations, with some highly admixed individuals and overall similar levels of migration between populations. We confirmed the differentiation of the Araguaia River basin population (S. l. araguayae) and gathered circumstantial evidence indicating that the taxon S. hagmanni may represent a highly introgressed population between three distinct phylogroups of S. luctuosus. Divergences between populations occurred during the last 1.2 mya. Signs of population expansions were detected for populations attributed to subspecies S. l. luctuosus, but not for the S. l. araguayae population. Our results support that S. luctuosus has had a complex population history, resulting from a high dependence on southeastern “clear water” seasonally flooded habitats and their availability through time. Spatial and demographic expansions toward the western “white water” flooded forests might be related to recent changes in connectivity and availability of these habitats. Our study reinforces the view that isolation due to absence of suitable habitat has been an important driver of population differentiation within Amazonian flooded forests, but also that differences between várzeas (“white water” floodplains, mostly in southwestern Amazonia) and igapós (“clear water” floodplains, especially located in the east) should be further explored as drivers of micro‐evolution for terrestrial species.  相似文献   

14.
Three hemotropic mycoplasmas have been identified in pet cats: Mycoplasma haemofelis, “Candidatus Mycoplasma haemominutum,” and “Candidatus Mycoplasma turicensis.” The way in which these agents are transmitted is largely unknown. Thus, this study aimed to investigate fleas, ticks, and rodents as well as saliva and feces from infected cats for the presence of hemotropic mycoplasmas, to gain insight into potential transmission routes for these agents. DNA was extracted from arthropods and from rodent blood or tissue samples from Switzerland and from salivary and fecal swabs from two experimentally infected and six naturally infected cats. All samples were analyzed with real-time PCR, and some positive samples were confirmed by sequencing. Feline hemotropic mycoplasmas were detected in cat fleas and in a few Ixodes sp. and Rhipicephalus sp. ticks collected from animals but not in ticks collected from vegetation or from rodent samples, although the latter were frequently Mycoplasma coccoides PCR positive. When shedding patterns of feline hemotropic mycoplasmas were investigated, “Ca. Mycoplasma turicensis” DNA was detected in saliva and feces at the early but not at the late phase of infection. M. haemofelis and “Ca. Mycoplasma haemominutum” DNA was not amplified from saliva and feces of naturally infected cats, despite high hemotropic mycoplasma blood loads. Our results suggest that besides an ostensibly indirect transmission by fleas, direct transmission through saliva and feces at the early phase of infection could play a role in the epizootiology of feline hemotropic mycoplasmas. Neither the investigated tick nor the rodent population seems to represent a major reservoir for feline hemotropic mycoplasmas in Switzerland.  相似文献   

15.
The occurrence of Cryptosporidium oocysts in feces from a population of wild eastern grey kangaroos inhabiting a protected watershed in Sydney, Australia, was investigated. Over a 2-year period, Cryptosporidium oocysts were detected in 239 of the 3,557 (6.7%) eastern grey kangaroo fecal samples tested by using a combined immunomagnetic separation and flow cytometric technique. The prevalence of Cryptosporidium in this host population was estimated to range from 0.32% to 28.5%, with peaks occurring during the autumn months. Oocyst shedding intensity ranged from below 20 oocysts/g feces to 2.0 × 106 oocysts/g feces, and shedding did not appear to be associated with diarrhea. Although morphologically similar to the human-infective Cryptosporidium hominis and the Cryptosporidium parvum “bovine” genotype oocysts, the oocysts isolated from kangaroo feces were identified as the Cryptosporidium “marsupial” genotype I or “marsupial” genotype II. Kangaroos are the predominant large mammal inhabiting Australian watersheds and are potentially a significant source of Cryptosporidium contamination of drinking water reservoirs. However, this host population was predominantly shedding the marsupial-derived genotypes, which to date have been identified only in marsupial host species.  相似文献   

16.
A growing variety of “genotype-by-sequencing” (GBS) methods use restriction enzymes and high throughput DNA sequencing to generate data for a subset of genomic loci, allowing the simultaneous discovery and genotyping of thousands of polymorphisms in a set of multiplexed samples. We evaluated a “double-digest” restriction-site associated DNA sequencing (ddRAD-seq) protocol by 1) comparing results for a zebra finch (Taeniopygia guttata) sample with in silico predictions from the zebra finch reference genome; 2) assessing data quality for a population sample of indigobirds (Vidua spp.); and 3) testing for consistent recovery of loci across multiple samples and sequencing runs. Comparison with in silico predictions revealed that 1) over 90% of predicted, single-copy loci in our targeted size range (178–328 bp) were recovered; 2) short restriction fragments (38–178 bp) were carried through the size selection step and sequenced at appreciable depth, generating unexpected but nonetheless useful data; 3) amplification bias favored shorter, GC-rich fragments, contributing to among locus variation in sequencing depth that was strongly correlated across samples; 4) our use of restriction enzymes with a GC-rich recognition sequence resulted in an up to four-fold overrepresentation of GC-rich portions of the genome; and 5) star activity (i.e., non-specific cutting) resulted in thousands of “extra” loci sequenced at low depth. Results for three species of indigobirds show that a common set of thousands of loci can be consistently recovered across both individual samples and sequencing runs. In a run with 46 samples, we genotyped 5,996 loci in all individuals and 9,833 loci in 42 or more individuals, resulting in <1% missing data for the larger data set. We compare our approach to similar methods and discuss the range of factors (fragment library preparation, natural genetic variation, bioinformatics) influencing the recovery of a consistent set of loci among samples.  相似文献   

17.
We investigated the fine-scale population structure of the “Candidatus Accumulibacter” lineage in enhanced biological phosphorus removal (EBPR) systems using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. We retrieved fragments of “Candidatus Accumulibacter” 16S rRNA and ppk1 genes from one laboratory-scale and several full-scale EBPR systems. Phylogenies reconstructed using 16S rRNA genes and ppk1 were largely congruent, with ppk1 granting higher phylogenetic resolution and clearer tree topology and thus serving as a better genetic marker than 16S rRNA for revealing population structure within the “Candidatus Accumulibacter” lineage. Sequences from at least five clades of “Candidatus Accumulibacter” were recovered by ppk1-targeted PCR, and subsequently, specific primer sets were designed to target the ppk1 gene for each clade. Quantitative real-time PCR (qPCR) assays using “Candidatus Accumulibacter”-specific 16S rRNA and “Candidatus Accumulibacter” clade-specific ppk1 primers were developed and conducted on three laboratory-scale and nine full-scale EBPR samples and two full-scale non-EBPR samples to determine the abundance of the total “Candidatus Accumulibacter” lineage and the relative distributions and abundances of the five “Candidatus Accumulibacter” clades. The qPCR-based estimation of the total “Candidatus Accumulibacter” fraction as a proportion of the bacterial community as measured using 16S rRNA genes was not significantly different from the estimation measured using ppk1, demonstrating the power of ppk1 as a genetic marker for detection of all currently defined “Candidatus Accumulibacter” clades. The relative distributions of “Candidatus Accumulibacter” clades varied among different EBPR systems and also temporally within a system. Our results suggest that the “Candidatus Accumulibacter” lineage is more diverse than previously realized and that different clades within the lineage are ecologically distinct.  相似文献   

18.
Salmonella enterica isolates were recovered from swine at a collaborating processing plant over a 2-month period in the spring of 2000. In the present study, molecular subtyping by pulsed-field gel electrophoresis (PFGE) was performed on the 581 confirmed Salmonella isolates from the 84 Salmonella-positive samples obtained from the previous study. A total of 32 different PFGE pulsotypes were observed visually, and a BioNumerics software analysis clustered those pulsotypes into 12 PFGE groups. The B, F, and G groups predominated throughout the sampling period and were isolated from 39, 22, and 13% of the swine, respectively. In addition, multiple isolates were obtained from 67 of the 84 Salmonella-positive samples, and subtyping revealed multiple PFGE profiles in 35 of these 67 (62%) samples. Both carcass and fecal isolates of Salmonella were recovered from 13 swine, resulting in “matched” samples. Molecular typing of the 252 isolates recovered from the matched samples revealed that 7 (54%) of the 13 carcasses were contaminated with Salmonella pulsotypes that were not isolated from the feces of the same animal. Conversely, from 6 of the 13 (46%) matched animals, Salmonella clonal types were isolated from the feces that were not isolated from the carcass of the same animal. These data establish that each lot of swine introduces new contaminants into the plant environment and that swine feces from one animal can contaminate many carcasses. In addition, these results indicate that the examination of multiple Salmonella isolates from positive samples is necessary to determine the variety of potential contaminants of swine carcasses during slaughter and processing.  相似文献   

19.
Methanotrophs and Methanogens in Masonry   总被引:1,自引:0,他引:1       下载免费PDF全文
Methanotrophs were present in 48 of 225 stone samples which were removed from 19 historical buildings in Germany and Italy. The average cell number of methanotrophs was 20 CFU per g of stone, and their activities ranged between 11 and 42 pmol of CH4 g of stone−1 day−1. Twelve strains of methane-oxidizing bacteria were isolated. They belonged to the type II methanotrophs of the genera Methylocystis, Methylosinus, and Methylobacterium. In masonry, growth substrates like methane or methanol are available in very low concentrations. To determine if methane could be produced by the stone at rates sufficient to support growth of methanotrophs, methane production by stone samples under nonoxic conditions was examined. Methane production of 0.07 to 215 nmol of CH4 g of stone−1 day−1 was detected in 23 of 47 stone samples examined. This indicated the presence of the so-called “mini-methane”-producing bacteria and/or methanogenic archaea. Methanotrophs occurred in nearly all samples which showed methane production. This finding indicated that methanotrophs depend on biogenic methane production in or on stone surfaces of historical buildings.  相似文献   

20.
[13C6]salicylate, [U-13C]naphthalene, and [U-13C]phenanthrene were synthesized and separately added to slurry from a bench-scale, aerobic bioreactor used to treat soil contaminated with polycyclic aromatic hydrocarbons. Incubations were performed for either 2 days (salicylate, naphthalene) or 7 days (naphthalene, phenanthrene). Total DNA was extracted from the incubations, the “heavy” and “light” DNA were separated, and the bacterial populations associated with the heavy fractions were examined by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone libraries. Unlabeled DNA from Escherichia coli K-12 was added to each sample as an internal indicator of separation efficiency. While E. coli was not detected in most analyses of heavy DNA, a low number of E. coli sequences was recovered in the clone libraries associated with the heavy DNA fraction of [13C]phenanthrene incubations. The number of E. coli clones recovered proved useful in determining the relative amount of light DNA contamination of the heavy fraction in that sample. Salicylate- and naphthalene-degrading communities displayed similar DGGE profiles and their clone libraries were composed primarily of sequences belonging to the Pseudomonas and Ralstonia genera. In contrast, heavy DNA from the phenanthrene incubations displayed a markedly different DGGE profile and was composed primarily of sequences related to the Acidovorax genus. There was little difference in the DGGE profiles and types of sequences recovered from 2- and 7-day incubations with naphthalene, so secondary utilization of the 13C during the incubation did not appear to be an issue in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号