首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Substituted cysteine accessibility mutagenesis (SCAM) has been used widely to identify pore-lining amino acid side chains in ion channel proteins. However, functional effects on permeation and gating can be difficult to separate, leading to uncertainty concerning the location of reactive cysteine side chains. We have combined SCAM with investigation of the charge-dependent effects of methanethiosulfonate (MTS) reagents on the functional permeation properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels. We find that cysteines substituted for seven out of 21 continuous amino acids in the eleventh and twelfth transmembrane (TM) regions can be modified by external application of positively charged [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium [2-sulfonatoethyl] MTS (MTSES). Modification of these cysteines leads to changes in the open channel current–voltage relationship at both the macroscopic and single-channel current levels that reflect specific, charge-dependent effects on the rate of Cl permeation through the channel from the external solution. This approach therefore identifies amino acid side chains that lie within the permeation pathway. Cysteine mutagenesis of pore-lining residues also affects intrapore anion binding and anion selectivity, giving more information regarding the roles of these residues. Our results demonstrate a straightforward method of screening for pore-lining amino acids in ion channels. We suggest that TM11 contributes to the CFTR pore and that the extracellular loop between TMs 11 and 12 lies close to the outer mouth of the pore.  相似文献   

2.
Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ATP-binding cassette transporters in that it functions as an ion channel. In CFTR, ATP binding opens the channel, and its subsequent hydrolysis causes channel closure. We studied the conformational changes in the pore-lining sixth transmembrane segment upon ATP binding by measuring state-dependent changes in accessibility of substituted cysteines to methanethiosulfonate reagents. Modification rates of three residues (resides 331, 333, and 335) near the extracellular side were 10-1000-fold slower in the open state than in the closed state. Introduction of a charged residue by chemical modification at two of these positions (resides 331 and 333) affected CFTR single-channel gating. In contrast, modifications of pore-lining residues 334 and 338 were not state-dependent. Our results suggest that ATP binding induces a modest conformational change in the sixth transmembrane segment, and this conformational change is coupled to the gating mechanism that regulates ion conduction. These results may establish a structural basis of gating involving the dynamic rearrangement of transmembrane domains necessary for vectorial transport of substrates in ATP-binding cassette transporters.  相似文献   

3.
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a member of the ATP-binding cassette (ABC) protein family, most members of which act as active transporters. Actively transporting ABC proteins are thought to alternate between "outwardly facing" and "inwardly facing" conformations of the transmembrane substrate pathway. In CFTR, it is assumed that the outwardly facing conformation corresponds to the channel open state, based on homology with other ABC proteins. We have used patch clamp recording to quantify the rate of access of cysteine-reactive probes to cysteines introduced into two different transmembrane regions of CFTR from both the intracellular and extracellular solutions. Two probes, the large [2-sulfonatoethyl]methanethiosulfonate (MTSES) molecule and permeant Au(CN)(2)(-) ions, were applied to either side of the membrane to modify cysteines substituted for Leu-102 (first transmembrane region) and Thr-338 (sixth transmembrane region). Channel opening and closing were altered by mutations in the nucleotide binding domains of the channel. We find that, for both MTSES and Au(CN)(2)(-), access to these two cysteines from the cytoplasmic side is faster in open channels, whereas access to these same sites from the extracellular side is faster in closed channels. These results are consistent with alternating access to the transmembrane regions, however with the open state facing inwardly and the closed state facing outwardly. Our findings therefore prompt revision of current CFTR structural and mechanistic models, as well as having broader implications for transport mechanisms in all ABC proteins. Our results also suggest possible locations of both functional and dysfunctional ("vestigial") gates within the CFTR permeation pathway.  相似文献   

5.
Liu X  Dawson DC 《Biochemistry》2011,50(47):10311-10317
Cysteine scanning has been widely used to identify pore-lining residues in mammalian ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR). These studies, however, have been typically conducted at room temperature rather than human body temperature. Reports of substantial effects of temperature on gating and anion conduction in CFTR channels as well as an unexpected pattern of cysteine reactivity in the sixth transmembrane segment (TM6) prompted us to investigate the effect of temperature on the reactivity of cysteines engineered into TM6 of CFTR. We compared reaction rates at temperatures ranging from 22 to 37 °C for cysteines placed on either side of an apparent size-selective accessibility barrier previously defined by comparing reactivity toward channel-permeant and channel-impermeant, thiol-directed reagents. The results indicate that the reactivity of cysteines at three positions extracellular to the position of the accessibility barrier, 334, 336, and 337, is highly temperature-dependent. At 37 °C, cysteines at these positions were highly reactive toward MTSES(-), whereas at 22 °C, the reaction rates were 2-6-fold slower to undetectable. An activation energy of 157 kJ/mol for the reaction at position 337 is consistent with the hypothesis that, at physiological temperature, the extracellular portion of the CFTR pore can adopt conformations that differ significantly from those that can be accessed at room temperature. However, the position of the accessibility barrier defined empirically by applying channel-permeant and channel-impermeant reagents to the extracellular aspect of the pore is not altered. The results illuminate previous scanning results and indicate that the assay temperature is a critical variable in studies designed to use chemical modification to test structural models for the CFTR anion conduction pathway.  相似文献   

6.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of “rational” approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287–288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287–288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.  相似文献   

7.
Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids.  相似文献   

8.
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR’s TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR’s TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR’s gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.  相似文献   

9.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl? channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl? movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl? channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.  相似文献   

10.
Randak C  Welsh MJ 《Cell》2003,115(7):837-850
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that regulates the flow of anions across epithelia. Mutations in CFTR cause cystic fibrosis. CFTR belongs to the ATP-binding cassette transporter superfamily, and gating is controlled by phosphorylation and ATP binding and hydrolysis. Recently obtained ATP-free and ATP-bound structures of zebrafish CFTR revealed an unwound segment of transmembrane helix (TM) 8, which appears to be a unique feature of CFTR not present in other ATP-binding cassette transporter structures. Here, using μs-long molecular dynamics simulations, we investigate the interactions formed by this TM8 segment with nearby helices in both ATP-free and ATP-bound states. We highlight ATP-dependent interactions as well as the structural role of TM8 in maintaining the functional architecture of the pore via interactions common to both the ATP-bound and ATP-free state. The results of the molecular dynamics simulations are discussed in the context of the gating mechanism of CFTR.  相似文献   

12.
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a member of the ATP-binding cassette (ABC) family of membrane transport proteins, most members of which function as ATP-dependent pumps. CFTR is unique among human ABC proteins in functioning not as a pump, but as an ion channel. Recent structural data has indicated that CFTR shares broadly similar overall architecture and ATP-dependent conformational changes as other ABC proteins. Functional investigations suggest that CFTR has a unique open portal connecting the cytoplasm to the transmembrane channel pore, that allows for a continuous pathway for Cl? ions to cross the membrane in one conformation. This lateral portal may be what allows CFTR to function as an ion channel rather than as a pump, suggesting a plausible mechanism by which channel function may have evolved in CFTR.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the adenosine triphosphate–binding cassette (ABC) transporter superfamily that functions as a chloride channel. Previous work has suggested that the external side of the sixth transmembrane segment (TM6) plays an important role in governing chloride permeation, but the function of the internal side remains relatively obscure. Here, on a cysless background, we performed cysteine-scanning mutagenesis and modification to screen the entire TM6 with intracellularly applied thiol-specific methanethiosulfonate reagents. Single-channel amplitude was reduced in seven cysteine-substituted mutants, suggesting a role of these residues in maintaining the pore structure for normal ion permeation. The reactivity pattern of differently charged reagents suggests that the cytoplasmic part of TM6 assumes a secondary structure of an α helix, and that reactive sites (341, 344, 345, 348, 352, and 353) reside in two neighboring faces of the helix. Although, as expected, modification by negatively charged reagents inhibits anion permeation, interestingly, modification by positively charged reagents of cysteine thiolates on one face (344, 348, and 352) of the helix affects gating. For I344C and M348C, the open time was prolonged and the closed time was shortened after modification, suggesting that depositions of positive charges at these positions stabilize the open state but destabilize the closed state. For R352C, which exhibited reduced single-channel amplitude, modifications by two positively charged reagents with different chemical properties completely restored the single-channel amplitude but had distinct effects on both the open time and the closed time. These results corroborate the idea that a helix rotation of TM6, which has been proposed to be part of the molecular motions during transport cycles in other ABC transporters, is associated with gating of the CFTR pore.  相似文献   

14.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl?channel in the ATP-binding cassette (ABC) transporter protein family. CFTR features the modular design characteristic of ABC transporters, which includes two membrane-spanning domains forming the channel pore, and two ABC nucleotide-binding domains that interact with ATP and contain the enzymatic activity coupled to normal gating. Like other ABC transporters CFTR is an ATPase (ATP + H2O → ADP + Pi). Recent work has shown that CFTR also possesses intrinsic adenylate kinase activity (ATP + AMP ? ADP + ADP). This finding raises important questions: How does AMP influence CFTR gating? Why does ADP inhibit CFTR current? Which enzymatic activity gates CFTR in vivo? Are there implications for other ABC transporters? This minireview attempts to shed light on these questions by summarizing recent advances in our understanding of the role of the CFTR adenylate kinase activity for channel gating.  相似文献   

15.
Peptide toxins from animal venom have been used for many years for the identification and study of cation-permeable ion channels. However, no peptide toxins have been identified that interact with known anion-selective channels, including cystic fibrosis transmembrane conductance regulator (CFTR), the protein defective in cystic fibrosis and a member of the ABC transporter superfamily. Here, we describe the identification and initial characterization of a novel 3.7-kDa peptide toxin, GaTx1, which is a potent and reversible inhibitor of CFTR, acting from the cytoplasmic side of the membrane. Thus, GaTx1 is the first peptide toxin identified that inhibits a chloride channel of known molecular identity. GaTx1 exhibited high specificity, showing no effect on a panel of nine transport proteins, including Cl(-) and K(+) channels, and ABC transporters. GaTx1-mediated inhibition of CFTR channel activity is strongly state-dependent; both potency and efficacy are reduced under conditions of elevated [ATP], suggesting that GaTx1 may function as a non-competitive inhibitor of ATP-dependent channel gating. This tool will allow the application of new quantitative approaches to study CFTR structure and function, particularly with respect to the conformational changes that underlie transitions between open and closed states.  相似文献   

16.
We developed molecular models for the cystic fibrosis transmembrane conductance regulator chloride channel based on the prokaryotic ABC transporter, Sav1866. Here we analyze predicted pore geometry and side-chain orientations for TM3, TM6, TM9, and TM12, with particular attention being paid to the location of the rate-limiting barrier for anion conduction. Side-chain orientations assayed by cysteine scanning were found to be from 77 to 90% in accord with model predictions. The predicted geometry of the anion conduction path was defined by a space-filling model of the pore and confirmed by visualizing the distribution of water molecules from a molecular dynamics simulation. The pore shape is that of an asymmetric hourglass, comprising a shallow outward-facing vestibule that tapers rapidly toward a narrow "bottleneck" linking the outer vestibule to a large inner cavity extending toward the cytoplasmic extent of the lipid bilayer. The junction between the outer vestibule and the bottleneck features an outward-facing rim marked by T338 in TM6 and I1131 in TM12, consistent with the observation that cysteines at both of these locations reacted with both channel-permeant and channel-impermeant, thiol-directed reagents. Conversely, cysteines substituted for S341 in TM6 or T1134 in TM12, predicted by the model to lie below the rim of the bottleneck, were found to react exclusively with channel-permeant reagents applied from the extracellular side. The predicted dimensions of the bottleneck are consistent with the demonstrated permeation of Cl(-), pseudohalide anions, water, and urea.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ion channel in that its gating is coupled to an intrinsic enzymatic activity (ATP hydrolysis). This enzymatic activity derives from the evolutionary origin of CFTR as an ATP-binding cassette transporter. CFTR gating is distinct from that of a typical ligand-gated channel because its ligand (ATP) is usually consumed during the gating cycle. However, recent findings indicate that CFTR gating exhibits allosteric properties that are common to conventional ligand-gated channels (e.g. unliganded openings and constitutive mutations). Here, we provide a unified view of CFTR gating that combines the allosterism of a ligand-gated channel with its unique enzymatic activity.  相似文献   

19.
The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH(2)-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH(2)-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1-NBD2 association to channel opening.  相似文献   

20.
Different transmembrane (TM) α helices are known to line the pore of the cystic fibrosis TM conductance regulator (CFTR) Cl(-) channel. However, the relative alignment of these TMs in the three-dimensional structure of the pore is not known. We have used patch-clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of the pore-lining first TM (TM1) of a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM1 residues K95, Q98, P99, and L102 when applied to the cytoplasmic side of open channels. Residues closer to the intracellular end of TM1 (Y84-T94) were not apparently modified by MTS reagents, suggesting that this part of TM1 does not line the pore. None of the internal MTS reagent-reactive cysteines was modified by extracellular [2-(trimethylammonium)ethyl] MTS. Only K95C, closest to the putative intracellular end of TM1, was apparently modified by intracellular [2-sulfonatoethyl] MTS before channel activation. Comparison of these results with recent work on CFTR-TM6 suggests a relative alignment of these two important TMs along the axis of the pore. This alignment was tested experimentally by formation of disulfide bridges between pairs of cysteines introduced into these two TMs. Currents carried by the double mutants K95C/I344C and Q98C/I344C, but not by the corresponding single-site mutants, were inhibited by the oxidizing agent copper(II)-o-phenanthroline. This inhibition was irreversible on washing but could be reversed by the reducing agent dithiothreitol, suggesting disulfide bond formation between the introduced cysteine side chains. These results allow us to develop a model of the relative positions, functional contributions, and alignment of two important TMs lining the CFTR pore. Such functional information is necessary to understand and interpret the three-dimensional structure of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号