首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Callinectes sapidus, the Atlantic blue crab, encounters hypoxia, hypercapnia (elevated CO(2)), and bacterial pathogens in its natural environment. We tested the hypothesis that acute exposure to hypercapnic hypoxia (HH) alters the crab's ability to clear a pathogenic bacterium, Vibrio campbellii 90-69B3, from the hemolymph. Adult male crabs were held in normoxia (well-aerated seawater) or HH (seawater with PO(2) = 4 kPa; PCO(2) = 1.8 kPa; and pH = 6.7-7.1) and were injected with 2.5 x 10(4) Vibrio g(-1) body weight. The animals were held in normoxia or in HH for 45, 75, or 210-240 min before being injected with Vibrio, and were maintained in their respective treatment conditions for the 120-min duration of the experiment. Vibrio colony-forming units (CFU) ml(-1) hemolymph were quantified before injection, and at 10, 20, and 40 min afterward. Total hemocytes (THC) ml(-1) of hemolymph were counted 24 h before (-24 h), and at 10 and 120 min after injection. Sham injections of saline produced no change in the bacterial or hemocyte counts in any treatment group. Among the groups that received bacterial injections, Vibrio was almost completely cleared within 1 h, but at 10-min postinjection, Vibrio CFU ml(-1) hemolymph was significantly higher in animals held in HH for 75 and 210-240 min than in those held in normoxia. Within 10 min after crabs were injected with bacteria, THC ml(-1) significantly decreased in control and HH45 treatments, but not in the HH75 and HH210-240 treatments. By 120 min after injection of bacteria, hemocyte counts decreased in all but the HH45 group. These data demonstrate that HH significantly impairs the ability of blue crabs to clear Vibrio from the hemolymph. These results also suggest that HH alters the normal role of circulating hemocytes in the removal of an invading pathogen.  相似文献   

3.
Insects rely on an innate immune system to effectively respond to pathogenic challenges. Most studies on the insect immune system describe changes in only one or two immune parameters following a single immune challenge. In addition, a variety of insect models, often at different developmental stages, have been used, making it difficult to compare results across studies. In this study, we used adult male Acheta domesticus crickets to characterize the response of the insect innate immune system to three different immune challenges: injection of bacterial lipopolysaccharides (LPS); injection of live Serratia marcescens bacteria; or insertion of a nylon filament into the abdomen. For each challenge, we measured and compared hemolymph phenoloxidase (PO) and lysozyme-like enzyme activities; the number of circulating hemocytes; and the nodulation responses of challenged and un-challenged crickets. We found that injection of an LD50 dose of LPS from Escherichia coli elicited a more rapid response than an LD50 dose of LPS from S. marcescens. LPS injection could cause a rapid decrease 2 hpi, followed by an increase by 7 dpi, in the number of circulating hemocytes. In contrast, injection of live S. marcescens produced a rapid increase and then decrease in hemocyte number. This was followed by an increase in the number of hemocytes at 7 dpi, similar to that observed following LPS injection. Both LPS and live bacteria decreased hemolymph PO activity, but the timing of this effect was dependent on the challenge. Live bacteria, but not LPS, induced an increase in lysozyme-like activity in the hemolymph. Insertion of a nylon filament induced a decrease in hemolymph PO activity 2 h after insertion of the filament, but had no effect on hemocyte number or lytic activity. Our results indicate that the innate immune system’s response to each type of challenge can vary greatly in both magnitude and timing, so it is important to assess multiple parameters at multiple time points in order to obtain a comprehensive view of such responses.  相似文献   

4.
We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.  相似文献   

5.
Lysozymelike activity is present in the hemocytes and cell-free hemolymph of Spodoptera eridania. Its level remains essentially constant during larval development and can be induced by injection of various foreign materials. Serum bacteriolytic activity rises 24 hr after injection of saline, BSA, bacteria, bacterial endotoxin (LPS), latex particles, or sham injection. However, the magnitude and subsequent duration of the response depends on the nature of the injected material. The response is transient following sham injection or injection of soluble substances, such as saline and BSA, as compared to treatment with latex or bacteria. Both soluble and insoluble fractions of bacterial LPS preparations stimulated the lysozyme response. The response to a single injection of E. coli LPS was dose dependent and persisted for at least 5 days; however, additional injections had no effect on serum lysozyme level. The basal intracellular lysozyme level was significantly increased by E. coli LPS injection. Lysozyme release by hemocytes was proportional to intracellular concentration and did not increase after phagocytic stimulation of hemocytes.  相似文献   

6.
The Atlantic blue crab, Callinectes sapidus (Rathbun), lives in a bacteria-rich environment that experiences daily fluctuations in water quality. In the present study, we tested the hypothesis that crustaceans with prior or ongoing exposure to bacteria in their hemolymph have an increased susceptibility to subsequent infections, and that acute exposure to low dissolved oxygen (hypoxia) and elevated carbon dioxide levels (hypercapnia) may further confound the ability of blue crabs to counter a subsequent infection. Adult male blue crabs held in well-aerated (normoxic; P O2=20.7 kPA; CO(2)<0.06 kPa; pH 7.8-8.0) or hypercapnic hypoxic (HH; P O2=4 kPa; CO(2)=1.8 kPa; pH 6.9-7.2) seawater received an injection (pre-challenge dose) of 1 x 10(5)Vibrio campbellii g(-1) crab. Control animals were injected with an equivalent dose of HEPES-buffered saline (1 microl g(-1) crab). At 2h or 24h after the pre-challenge injection, both Vibrio and saline-pre-challenged animals were injected with a dose of live V. campbellii (1 x 10(5)g(-1) crab). This second injection will be referred to as a second injection or challenge injection. Degradation in or physical removal of intact bacteria from hemolymph was quantified using real-time PCR; bacteriostasis was quantified as the percentage of intact bacteria that could not be recovered by selective plating. We demonstrated that bacteriostasis occurs in the hemolymph of blue crabs. Furthermore, blue crabs that received a challenge injection 2h after a pre-challenge dose of V. campbellii cleared culturable bacteria from their hemolymph more rapidly when compared to animals that received a pre-challenge dose of saline. This enhanced clearance of culturable bacteria was associated with an increase in antibacterial activity in the cell-free hemolymph. However, the enhanced clearance of culturable bacteria disappeared when the time interval between the pre-challenge and challenge dose was extended to 24h and when crabs were held in HH seawater throughout the experiment. Neither the time interval between the pre-challenge and the challenge dose nor exposure to HH altered the pattern of intact bacterial clearance in blue crabs. These results demonstrate that prior exposure to bacteria does not increase the susceptibility of C. sapidus to a second, sublethal dose of V. campbellii. In fact, a recent exposure to V. campbellii enhances the ability of blue crabs to render bacteria non-culturable and the immune mechanisms/effectors responsible for this are short lived and appear to be sensitive to low dissolved oxygen and high carbon dioxide concentrations in the environment.  相似文献   

7.
Effects of LPS on primary and secondary antibody responses to typical TI-2 antigens were investigated in mice. Simultaneous injection of LPS with a TI-2 antigen showed only little adjuvant effect on the following primary antibody response to the antigen. In contrast, either a single or multiple injections of LPS, prior to the immunization with a TI-2 antigen, significantly augmented the following primary antibody response to the antigen. LPS, however, inhibited the development of B-cell memory to a TI-2 antigen when administered together with the antigen. Moreover, an injection of LPS in mice, which had strong IgM and IgG B-cell memories to a TI-2 antigen, caused disappearance or profound reduction of the memories. The results suggest that LPS produced by gram-negative bacteria exerts inhibitory effects on the development and continuation of B-cell memory to bacterial infections.  相似文献   

8.
Leucine-rich repeat containing proteins are involved in immune response in many capacities. In insects, these include Toll-like receptors and the Anopheles gambiae proteins APL1 and LRIM1. Here we describe the identification and characterization of leureptin, a novel extracellular protein with 13 leucine-rich repeats from hemolymph of the insect Manduca sexta. After injection of bacteria, leureptin mRNA level increased in fat body, but protein levels in plasma decreased, an indication that leureptin is consumed during the immune response. Leureptin bound to bacterial lipopolysaccharide (LPS). Microscopy using leureptin antiserum showed that leureptin associates with hemocytes after injection of bacteria, an indication that leureptin is involved in hemocyte responses to bacterial infection. Sequence database searches suggest similar proteins are present in other Lepidopteran species.  相似文献   

9.
Larval endoparasitoids can avoid the immune response of the host by the function of polydnavirus (PDV) and venom. PDV infects hemocytes and affects the hemocyte function of the host. In this paper, we investigated how PDV and venom affect the hemocyte population of the host. Cotesia kariyai, the larval endoparasitoid, lowers the hemocyte population of the noctuid host larvae soon after parasitization. The reduction in the number of circulating hemocytes is caused by the breakdown of the circulating hemocytes and of the hematopoietic organ which generates the circulating hemocytes. The decrease in the number of hemocytes shortly after parasitization is a response to the venom. However, the decrease in hemocyte population on and after 6 h post-parasitization appears to be caused by the PDV. Apoptosis in circulating hemocytes was observed on and after 6 h post-injection of PDV plus venom. It was revealed through cytometry that mitosis of circulating hemocytes was halted within 24 h after the injection of PDV plus venom. Apoptosis in the hematopoietic organ was induced 12 h after the injection of PDV plus venom. Furthermore, the plasma from the hosts injected with PDV plus venom depressed the number of hemocytes released from the hemotopoiteic organs.  相似文献   

10.
Previous studies have shown that injection of extracellular products (ECP) of Pseudoalteromononas atlantica isolated from shell disease-infected edible crabs (Cancer pagurus) into healthy crabs causes rapid death. In this study we examined the nature of the active lethal factor(s) in ECP. Injection of ECP into crabs caused a rapid decline in the total number of circulating hemocytes (blood cells), and the crabs died within 60 to 90 min. The individuals that died showed eyestalk retraction, limb paralysis, and lack of antennal sensitivity, suggesting that the active factor(s) targeted the nervous system. Histopathological investigations showed that affected crabs had large aggregates of hemocytes in the gills, and there was destruction of the tubules in the hepatopancreas. The active factor in ECP was not sensitive to heat treatment (100 degrees C for 30 min) and proteinase K digestion. As lipopolysaccharide (LPS) was a potential candidate for the lethal factor, it was purified from whole P. atlantica bacteria or ECP and subsequently injected into crabs. These crabs had all of the external symptoms observed previously with ECP, such as limb paralysis and eyestalk retraction, and they died within 90 min after challenge, although no significant decline in the number of circulating hemocytes was observed. Similarly, in vitro incubation of hemocytes with purified LPS (1 to 20 microg) from P. atlantica did not result in the clumping reaction observed with ECP but did result in a degranulation reaction and eventual cell lysis. Injection of crabs with Escherichia coli or Pseudomonas aeruginosa LPS (1 microg g of body weight(-1)) did not cause any of the characteristic symptoms observed following exposure to P. atlantica LPS. No mortality of crabs followed the injection of E. coli LPS, but P. aeruginosa LPS caused ca. 80% mortality at 2 h after injection. Overall, these results show that the main virulence factor of P. atlantica for edible crabs is LPS either alone or in combination with other heat-stable factors.  相似文献   

11.
We hypothesized that aggregation of bacteria and hemocytes at the gill, which occurs as part of the shrimp's antibacterial immune defenses, would impair normal respiratory function and thereby disrupt aerobic metabolism. Changes in oxygen uptake and lactate accumulation were determined in Litopenaeus vannamei, the Pacific white shrimp, following injection with either saline (control) or a strain of the gram-negative bacterium Vibrio campbellii that is pathogenic in crustaceans. The rate of oxygen uptake was determined during the first 4 h after injection and after 24 h. Injection of bacteria decreased oxygen uptake by 27% (from 11.0 to 8.2 micromol g-1 h-1) after 4 h, while saline-injected shrimp showed no change. Decreased oxygen uptake persisted 24 h after Vibrio injection. In well-aerated water, resting whole-animal lactic acid levels increased in shrimp injected with bacteria (mean=2.59 micromol lactate g-1+/-0.39 SEM, n=8) compared to saline-injected control shrimp, but this difference did not persist at 24 h. Exposure to hypercapnic hypoxia (PCO2=1.8 kPa, PO2=6.7 kPa) also resulted in significant whole-body lactic acid differences (mean=3.99 and 1.8 micromol g-1 tissue in Vibrio and saline-injected shrimp, respectively). Our results support the hypothesis that the crustacean immune response against invading bacteria impairs normal metabolic function, resulting in depression of oxygen uptake and slightly increased anaerobic metabolism.  相似文献   

12.
Previous studies have shown that injection of extracellular products (ECP) of Pseudoalteromononas atlantica isolated from shell disease-infected edible crabs (Cancer pagurus) into healthy crabs causes rapid death. In this study we examined the nature of the active lethal factor(s) in ECP. Injection of ECP into crabs caused a rapid decline in the total number of circulating hemocytes (blood cells), and the crabs died within 60 to 90 min. The individuals that died showed eyestalk retraction, limb paralysis, and lack of antennal sensitivity, suggesting that the active factor(s) targeted the nervous system. Histopathological investigations showed that affected crabs had large aggregates of hemocytes in the gills, and there was destruction of the tubules in the hepatopancreas. The active factor in ECP was not sensitive to heat treatment (100°C for 30 min) and proteinase K digestion. As lipopolysaccharide (LPS) was a potential candidate for the lethal factor, it was purified from whole P. atlantica bacteria or ECP and subsequently injected into crabs. These crabs had all of the external symptoms observed previously with ECP, such as limb paralysis and eyestalk retraction, and they died within 90 min after challenge, although no significant decline in the number of circulating hemocytes was observed. Similarly, in vitro incubation of hemocytes with purified LPS (1 to 20 μg) from P. atlantica did not result in the clumping reaction observed with ECP but did result in a degranulation reaction and eventual cell lysis. Injection of crabs with Escherichia coli or Pseudomonas aeruginosa LPS (1 μg g of body weight−1) did not cause any of the characteristic symptoms observed following exposure to P. atlantica LPS. No mortality of crabs followed the injection of E. coli LPS, but P. aeruginosa LPS caused ca. 80% mortality at 2 h after injection. Overall, these results show that the main virulence factor of P. atlantica for edible crabs is LPS either alone or in combination with other heat-stable factors.  相似文献   

13.
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.  相似文献   

14.
Crustacean gills function in gas exchange, ion transport, and immune defense against microbial pathogens. Hemocyte aggregates that form in response to microbial pathogens become trapped in the fine vasculature of the gill, leading to the suggestion by others that respiration and ion regulation might by impaired during the course of an immune response. In the present study, injection of the pathogenic bacterium Vibrio campbellii into Callinectes sapidus, the Atlantic blue crab, caused a dramatic decline in oxygen uptake from 4.53 to 2.56 micromol g-1 h-1. This decline in oxygen uptake is associated with a large decrease in postbranchial PO2, from 16.2 (+/-0.46 SEM, n=7) to 13.1 kPa (+/-0.77 SEM, n=9), while prebranchial PO2 remains unchanged. In addition, injection of Vibrio results in the disappearance of a pH change across the gills, an indication of reduced CO2 excretion. The hemolymph hydrostatic pressure change across the gill circulation increases nearly 2-fold in Vibrio-injected crabs compared with a negligible change in pressure across the gill circulation in saline-injected, control crabs. This change, in combination with stability of heart rate and branchial chamber pressure, is indicative of a significant increase in vascular resistance across the gills that is induced by hemocyte nodule formation. A healthy, active blue crab can eliminate most invading bacteria, but the respiratory function of the gills is impaired. Thus, when blue crabs are engaged in the immune response, they are less equipped to engage in oxygen-fueled activities such as predator avoidance, prey capture, and migration. Furthermore, crabs are less fit to invade environments that are hypoxic.  相似文献   

15.
16.
In response to LPS/E. coli treatment, extracellular signal-regulated kinase (ERK) is activated in medfly hemocytes. To explore the molecular mechanisms underlying LPS/E. coli/latex beads endo- and phagocytosis, we studied the signalling pathways leading to p38 and c-jun N-terminal kinase (JNK) activation. JNK and p38-like proteins were initially identified within medfly hemocytes. Flow cytometry analysis revealed that mitogen-activated protein kinases (MAPK) are required for phagocytosis. Inhibition of specific MAPK signalling pathways, with manumycin A, toxin A, cytochalasin D and latrunculin A, revealed activation of p38 via Ras/Rho/actin remodelling pathway and activation of JNK that was independent of actin cytoskeleton reorganization. ERK and p38 pathways, but not JNK, appeared to be involved in LPS-dependent hemocyte secretion, whereas all MAPK subfamilies seemed to participate in E. coli-dependent secretion. In addition, flow cytometry experiments in hemocytes showed that the LPS/E. coli-induced release was a prerequisite for LPS/E. coli uptake, whereas latex bead phagocytosis did not depend on hemocyte secretion. This is a novel aspect, as in mammalian monocytes/macrophages LPS/E. coli-triggered release has not been yet correlated with phagocytosis. It is of interest that these data suggest distinct mechanisms for the phagocytosis of E. coli and latex beads in medfly hemocytes.  相似文献   

17.
In the context of comparative studies on immunity defence mechanisms of adults and larvae of the coleopteran Cetonischema aeruginosa (Drury, 1770) the ultrastructure of the circulating hemocytes of the third instar larval stage has been investigated by means of light and transmission electron microscopy (TEM). Six types of hemocytes were found in the hemolymph of C. aeruginosa and they were identified as prohemocytes, granulocytes, plasmatocytes, coagulocytes, oenocytoids and spherule cells. In order to identify the "professional" phagocyte cell, phagocytosis assays were performed in vivo by injection of 0.9 microm carboxylate-modified polystyrene latex beads. It was demonstrated that the granulocytes and the oenocytoids of C. aeruginosa were the only hemocyte types involved in this cellular response.  相似文献   

18.
OK-432 has been used clinically as a biological response modifier for cancer therapy. We investigated here the protective effects of OK-432 against endotoxic shock and infectious death caused by Pseudomonas aeruginosa and Salmonella enteritidis in mice and proposed a possible mechanism. Pretreatment of OK-432 reduced the lethality of lipopolysaccharide (LPS)-induced endotoxic shock in D-(+)-galactosamine-sensitized C3H/HeN mice. OK-432 did not affect the TNFalpha production in blood, but it did decrease the susceptibility to TNFalpha. Furthermore, an acceleration of LPS clearance from blood was detected. The pretreatment of OK-432 also decreased the lethality of mice in bacterial infection caused by P. aeruginosa and S. enteritidis. The rapid decrease of the viable bacteria from the circulating blood and in spleen and liver in mice was observed in a manner similar to LPS clearance. These findings indicate that the protective effect of OK-432 against the endotoxemia and bacteremia may depend on an up-regulation of clearance of LPS and bacteria and the augmented resistance to TNFalpha.  相似文献   

19.
Bacterial adherence to human endothelial cells   总被引:3,自引:0,他引:3  
The adult respiratory distress syndrome (ARDS) is frequently caused by exposure of the lung endothelium to circulating endotoxin (lipopolysaccharide, LPS) and pulmonary infections frequently develop during the course of ARDS. The present studies demonstrate that LPS and interleukin 1 (IL-1, a mediator released by endothelial cells after exposure to LPS) enhance the adherence of Staphylococcus aureus to human umbilical vein endothelial cells. gamma-Interferon, another mediator that induces expression of some cell surface antigens on endothelial cells, had no effect on bacterial adherence. The adherence of bacteria to endothelium was increased by prior opsonization of the bacteria with fresh human serum and was reduced by prior absorption of the serum with bacteria before the use of the serum for opsonization. The capacity of LPS to increase bacterial adherence was time dependent and was maximally expressed after 6 h of exposure; it was blocked by exposure of endothelial cells to LPS in the presence of reduced temperature or dactinomycin (Actinomycin D). These observations suggest that circulating LPS not only can trigger the development of ARDS but also may predispose the lung to the development of pulmonary infections by increasing adherence of bacteria to endothelium.  相似文献   

20.
Mosquitoes are vectors of many deadly and debilitating pathogens. In the current study, we used light and electron microscopies to study the immune response of Aedes aegypti hemocytes to bacterial inoculations, Plasmodium gallinaceum natural infections, and latex bead injections. After challenge, mosquitoes mounted strong phagocytic and melanization responses. Granulocytes phagocytosed bacteria singly or pooled them inside large membrane-delimited vesicles. Phagocytosis of bacteria, Plasmodium sporozoites, and latex beads was extensive; we estimated that individual granulocytes have the capacity to phagocytose hundreds of bacteria and thousands of latex particles. Oenocytoids were also seen to internalize bacteria and latex particles, although infrequently and with low capacity. Besides phagocytosis, mosquitoes cleared bacteria and sporozoites by melanization. Interestingly, the immune response toward 2 species of bacteria was different; most Escherichia coli were phagocytosed, but most Micrococcus luteus were melanized. Similar to E. coli, most Plasmodium sporozoites were phagocytosed. The immune response was rapid; phagocytosis and melanization of bacteria began as early as 5 min after inoculation. The magnitude and speed of the cellular response suggest that hemocytes, acting in concert with the humoral immune response, are the main force driving the battle against foreign invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号