首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Many rivers and streams experience pronounced ice dynamics caused by the formation of anchor and frazil ice, leading to flooding and disturbance of riparian and aquatic communities. However, the effects of dynamic ice conditions on riverine biota are little known. 2. We studied the formation of anchor ice in natural streams over 2 years and assessed the effects of anchor ice on riparian vegetation by comparing sites with frequent or abundant and little or no anchor ice formation. We also studied the direct impact of ice on riparian plants by experimentally creating ice in the riparian zone over three winters and by exposing plants of different life forms to ?18 °C cold ice in the laboratory. 3. Riparian species richness per 1‐m2 plot was higher at sites affected by anchor ice than at sites where anchor ice was absent or rare, whereas dominance was lower, suggesting that disturbance by ice enhances species richness. Species composition was more homogenous among plots at anchor ice sites. By experimentally creating riparian ice, we corroborated the comparative results, with species richness increasing in ice‐treated plots compared to controls, irrespective of whether the sites showed natural anchor ice. 4. Because of human alterations of running waters, the natural effects of river ice on stream hydrology, geomorphology and ecology are little known. Global warming in northern streams is expected to lead to more dynamic ice conditions, offering new challenges for aquatic organisms and river management. Our results should stimulate new research, contributing to a better understanding of ecosystem function during winter.  相似文献   

2.
A decade has yielded much progress in understanding polar disturbance and community recovery-mainly through quantifying ice scour rates, other disturbance levels, larval abundance and diversity, colonization rates and response of benthos to predicted climate change. The continental shelf around Antarctica is clearly subject to massive disturbance, but remarkably across so many scales. In summer, millions of icebergs from sizes smaller than cars to larger than countries ground out and gouge the sea floor and crush the benthic communities there, while the highest wind speeds create the highest waves to pound the coast. In winter, the calm associated with the sea surface freezing creates the clearest marine water in the world. But in winter, an ice foot encases coastal life and anchor ice rips benthos from the sea floor. Over tens and hundreds of thousands of years, glaciations have done the same on continental scales-ice sheets have bulldozed the seabed and the zoobenthos to edge of shelves. We detail and rank modern disturbance levels (from most to least): ice; asteroid impacts; sediment instability; wind/wave action; pollution; UV irradiation; volcanism; trawling; non-indigenous species; freshwater inundation; and temperature stress. Benthic organisms have had to recolonize local scourings and continental shelves repeatedly, yet a decade of studies have demonstrated that they have (compared with lower latitudes) slow tempos of reproduction, colonization and growth. Despite massive disturbance levels and slow recolonization potential, the Antarctic shelf has a much richer fauna than would be expected for its area. Now, West Antarctica is among the fastest warming regions and its organisms face new rapid changes. In the next century, temperature stress and non-indigenous species will drastically rise to become dominant disturbances to the Antarctic life. Here, we describe the potential for benthic organisms to respond to disturbance, focusing particularly on what we know now that we did not a decade ago.  相似文献   

3.
A slumping event that occurred on permanent transect lines from 12- to 30- m depth located at Arrival Heights, McMurdo Sound, Antarctica in 1993, provided an opportunity to examine the effects of sediment-mediated disturbance on the benthic invertebrate fauna. The disturbance had a particularly significant impact on the soft coral Alcyonium paessleri, which resulted in 84% colony mortality downslope from the slump site compared to an average annual mortality rate of 14% on control transects. In contrast, anchor ice at the same site accounted for removal of 5% of the population in 1992. Laboratory experiments with A. paessleri colonies under conditions of periodic sediment resuspension indicate that the soft corals are susceptible to this form of disturbance. Our observations suggest they are capable of shedding fine silt in the laboratory, which might explain the presence of A. paessleri in soft-sediment sites around McMurdo Sound. However, scarring by larger gravel in laboratory assays was slow to heal and may account for much of the colony mortality we observed. Several invertebrate-barren rocky benthic regions in McMurdo Sound were suggestive of historical slumping events. Given the removal of the smaller grain size sediments from these areas – a typically slow process – it appears these communities are slow to recover. The long-term effects of sedimentation on the benthic communities are unknown, but the impact on A. paessleri, one of the most common and fastest growing species, suggests this disturbance mechanism could lead to significant restructuring of these communities. Received: 29 November 1996 / Accepted: 23 February 1997  相似文献   

4.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

5.
Riparian zones support some of the most dynamic and species‐rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in‐stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice‐free to ice‐rich reaches. The ice‐rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf‐shrub cover and led to colonization of a species‐rich forb‐dominated vegetation. In another experiment, natural winter floods caused by anchor‐ice formation removed plant mimics both in the in‐stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice‐induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice‐induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in‐stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.  相似文献   

6.
Summary Sea ice microbial communities (SIMCO) grow luxuriantly within several microhabitats of sea ice, indicating that the microorganisms comprising these communities are well adapted to the physicochemical gradients which characterize sea ice. We used SIMCO obtained from the bottom of congelation ice in McMurdo Sound, Antarctica, to test the hypothesis that low temperature limits microbial productivity in polar oceans and also to investigate the effect of salinity on rates of autotrophic and heterotrophic metablism. Substantial rates of carbon fixation, incorporation of thymidine, and uptake of glutamate occurred at the in situ temperatures of-1.9°C, with maximum rates at temperatures considerably warmer but below 15°C. Microalgae and bacteria of SIMCO are thus indicated to be psychrophiles. The relative rates of autotrophic and heterotrophic microbial growth (based on rates of fixation of 14CO2 by microalgae and incorporation of 3H-thymidine by bacteria, respectively) were similar and overlapped from 4° and 7°C. These data suggest that a recent hypothesis proposing the uncoupling of primary production and bacterial production in cold water, due to differential growth of phytoplankton and bacterioplankton at low temperatures, is refuted with respect to SIMCO. Maximum rates of carbon fixation by autotrophs of SIMCO occurred at salinities which characterized the ice from which the SIMCO were collected. In contrast, heterotrophs of SIMCO exhibited a more stenohaline response to variable salinity, with maximum incorporation of thymidine and uridine from 20 to 30. Adaptations by autotrophs and heterotrophs of SIMCO that permit substantial metabolism and growth at very low temperatures and variable salinities are significant when considering production and trophodynamics in polar oceans. Actively growing microorganisms in these unique communities contribute to overall production in polar oceans, provide carbon for food webs associated with sea ice, and upon release from melting ice may contribute to microbial blooms in marginal ice edge zones, which in turn support cryopelagic food webs.  相似文献   

7.
Psychrophilic and psycrotrophic organisms are important in global ecology as a large proportion of our planet is cold. Two-third of sea-water covering more than 70% of Earth is cold deep sea water with temperature around 2 degrees C, and more than 90% of freshwater is in polar ice-sheets and mountain glaciers. Though biological activity in snow and ice had been believed to be extremely limited, various specialized biotic communities were recently discovered at glaciers of various part of the world. The glacier is relatively simple and closed ecosystem with special biotic community containing various psychrophilic and psycrotrophic organisms. Since psychrophilic organisms was discovered in the deep ice-core recovered from the antarctic ice-sheet and a lake beneath it, snow and ice environments in Mars and Europa are attracting a great deal of scientific attention as possible extraterrestrial habitats of life. This paper briefly reviews the results of the studies on ecology of psychrophilic organisms living in snow and ice environments and their physiological and biochemical adaptation to low temperature.  相似文献   

8.
Little is known of the wider Antarctic distribution of the upper fast ice community now comprehensively described from McMurdo Sound. We determined the fast ice protist community at Davis Station, East Antarctica and compared it with that of McMurdo Sound. As at McMurdo Sound, Davis fast ice is characterised by extreme and transitory salinities (96–2.5 psu) and temperatures (−4.5 to −0.1°C) during the spring/summer transition. Both communities are dominated by Polarella glacialis (an autotrophic dinoflagellate), chrysophytes and their life cycle stages. Furthermore, the physical parameters of brine temperature and salinity at which these successions occurred approximated those of McMurdo Sound. The high degree of similarity between the communities from the geographically disparate locations indicates that this community type has a circum-Antarctic distribution. Confirming the areal extent and seasonality of this community type will assist in future predictions of sea ice productivity.  相似文献   

9.
A. D. Naumov 《Hydrobiologia》2013,706(1):159-173
The effect on bottom organisms of periodic freezing of the upper layer of intertidal sediments during abnormal cold winters has been studied for a long time in seas of a moderate climatic zone. However, the effect of ice cover every year on intertidal communities in polar seas is still poorly investigated. Seasonal and long-term variation in the structure of intertidal soft-bottom communities in two small bights in the White Sea with annual ice cover was studied for over two decades. Sampling was carried out four times a year, in the hydrological spring, summer, autumn, and winter. It was found that bottom macrobenthic communities at upper and lower horizons of the intertidal distinctly differed in the studied sites. Periodic changes caused by the effect of abnormal ice conditions, including the partial removal by ice of sediment with in situ organisms, were discovered. Recovery of communities after disturbance normally took less than half a year. Communities at the lower and upper horizons of the intertidal zone were more stable than intermediate communities, which led to periodic shifts of the biological border between lower and upper intertidal assemblages.  相似文献   

10.
Community structure and diversity are influenced by patterns of disturbance and input of food. In Antarctica, the marine ecosystem undergoes highly seasonal changes in availability of light and in primary production. Near research stations, organic input from human activities can disturb the regular productivity regime with a consistent input of sewage. McMurdo Sound has both high-productivity and low-productivity habitats, thereby providing an ideal test bed for community recovery dynamics under polar conditions. We used experimental manipulations of the subtidal communities to test the hypotheses that (1) benthic communities respond differently to disturbance from organic enrichment versus burial and (2) community response also varies in areas with different natural patterns of food supply. Both in low- and high-food habitats, the strongest community response was to organic enrichment and resulted in dominance of typical organic-enrichment specialists. In habitats with highly seasonal productivity, community response was predictable and recovery was rapid. In habitats with low productivity, community variability was high and caging treatments suggested that inconsistencies were due to patchy impacts by scavengers. In areas normally subject to regular organic enrichment, either from primary production or from further up the food web (defecation by marine mammals), recovery of benthic communities takes only years even in a polar system. However, a low-productivity regime is as common in near shore habitats around the continent; under these conditions, recovery of benthic communities from disturbance is likely to be much slower and follow a variable ecological trajectory.  相似文献   

11.
Summary During the austral summer of 1975–76 and winter of 1977 benthic and water column chlorophyll a and phaeopigments were measured at several sites along the east and west sides of McMurdo Sound, Antarctica. Estimates of in situ primary productivity were made at some McMurdo Sound locations. Additionally, water column samples were collected at 5 stations in the Ross Sea during January, 1976. Standing stock data are analyzed to identify seasonal and spatial patterns. Variability in algal standing stock was related to ambient light levels and appeared to be mediated by ice and snow cover whereby the highest algal standing stock was present under high light conditions (low ice and snow cover, shallow water, summer). Differences in published benthic invertebrate densities appear to be closely allied to differences in benthic primary production, and less so to in situ planktonic ice microalgal production.  相似文献   

12.
New ice formation, protist incorporation and enrichment in differentstages of young Arctic sea ice (grease,nilas and pancake ice)were studied in the Greenland Sea in autumn 1995. Nutrients(nitrite, nitrate, phosphateand silicate), salinity and abundanceestimates of organisms were analysed from surface water andnew ice samples. The abundances of bacteria, diatoms, and photo-and hetero trophic flagellates in the ice and water column weredetermined using epifluorescence microscopy. An enrichment indexwas calculated to compare the abundance of organisms in thewater column with different stages of young sea ice. The resultsclearly show that (i) protist incorporation already begins duringthe first stages of new sea ice formation, (ii) incorporationof protists is selective, showing preference for diatoms witha relatively large cell size and (iii) enrichment of organisms,in particular diatoms, takes place in young sea ice in the GreenlandSea. The selectivity of the incorpor ation process and the evidentpreference for diatoms are presumably a result of the largercell size and/orcertain properties of the cell surface (e.g.stickiness) that enhance their incorporation. The calculatedenrichment indices were relatively low for bacteria and flagellates.  相似文献   

13.
Microbiota within the perennial ice cover of Lake Vida, Antarctica   总被引:1,自引:0,他引:1  
Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.  相似文献   

14.
Survival of some polar fishes is associated with high levels of circulating antifreeze glycoproteins (AFGPs). AFGP prevent ice growth giving rise to thermal hysteresis. The inhibiting action of AFGPs implies that polar fish contain ice to which AFGPs adsorb. Cryopelagic Pagothenia borchgrevinki, inhabiting the ice-laden waters of McMurdo Sound, Antarctica, were assayed for ice and ice was found on skin, gills, in the intestine, and in the spleen. Two methods used to assess the number of ice crystals in spleens gave comparable results (12.1 +/− 1.9 and 22 +/− 3.8 per spleen). Attempts were made to measure the rate of uptake of ice by P. borchgrevinki held in cages immediately beneath the sub-ice platelet layer in McMurdo Sound; uptake was sporadic. Introduction of ice into fish by spray freezing a small patch of the integument resulted in detection of splenic ice after 1 h, illustrating that a mechanism exists for ice transport from the periphery to the spleen. Splenic ice did not seem to be eliminated from fish held in ice-free water at − 1.6 °C for approximately two months. The relatively small number of splenic ice crystals and the slow rate of ice uptake suggest efficient ice barriers exist in P. borchgrevinki.  相似文献   

15.
Disturbance has always shaped the evolution and ecology of organisms and nowhere is this more apparent that on the iceberg gouged continental shelves of the Antarctic Peninsula (AP). The vast majority of currently described polar biodiversity occurs on the Southern Ocean shelf but current and projected climate change is rapidly altering disturbance intensities in some regions. The AP is now amongst the fastest warming and changing regions on earth. Seasonal sea ice has decreased in time and extent, most glaciers in the region have retreated, a number of ice shelves have collapsed, and the surface waters of the seas west of the AP have warmed. Here, we review the influences of disturbance from ice, sedimentation, freshening events, wave action and humans on shallow water benthic assemblages, and suggest how disturbance pressures will change during the 21st century in the West Antarctic Peninsula (WAP) and Scotia Arc region. We suggest that the intensity of ice scouring will increase in the region over the next few decades as a result of decreased winter sea ice periods and increased ice loading into coastal waters. Thus, the most frequently disturbed environment on earth will become more so, which will lead to considerable changes in community structure and species distributions. However, as ice fronts retreat past their respective grounding lines, sedimentation and freshening events will become relatively more important. Human presence in the region is increasing, through research, tourism, and resource exploitation, which represents a considerable threat to polar biodiversity over the next century. Adapting to or tolerating multiple, changing environmental stressors will be difficult for a fauna with typically slow generation turnovers that has evolved largely in isolation. We suggest that intensifying acute and chronic disturbances are likely to cause significant changes in ecosystem structure, and probably a considerable loss of polar marine biodiversity, over relatively short timescales.  相似文献   

16.
Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature of sea water and above average sea water salinity. Here we show that antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in the two polar species. The presence of AFP genes (afps) as a multigene family indicated the importance of this group of genes for the genus Fragilariopsis, possibly contributing to its success in sea ice. Protein phylogeny showed the potential mobility of afps, which appear to have crossed kingdom and domain borders, occurring in Bacteria, diatoms, crustaceans and fungi. Our results revealed a broad distribution of AFPs not only in polar organisms but also in taxa apparently not related to cold environments, suggesting that these proteins may be multifunctional. The relevance of AFPs to Fragilariopsis was also shown by gene expression analysis. Under stress conditions typical for sea ice, with subzero temperatures and high salinities, F. cylindrus and F. curta strongly expressed selected afps. An E/G point mutation in the Fragilariopsis AFPs may play a role in gene expression activity and protein function.  相似文献   

17.
Notes on the biology of sea ice in the Arctic and Antarctic   总被引:1,自引:0,他引:1  
The sea ice which covers large areas of the polar regions plays a major role in the marine ecosystem of both the Arctic and Southern Oceans. Not only do warmblooded animals depend on sea ice as a platform, but the sympagic organisms living internally within the sea ice or at the interfaces ice/snow and ice/water provide a substantial part of the total primary production of the ice covered regions. In addition sea ice organisms are an important food source for a variety of pelagic animals and may initiate phytoplankton spring blooms after ice melt by seeding effects.Sea ice organisms often are enriched by some orders of magnitude if the same volume of melted ice is compared to that of the underlying water column. Three hypotheses try to explain this discrepancy and are discussed. Investigations on the nutrient chemistry within the sea ice system and in-situ observations still are rare. Intense growth of sympagic organisms can result in nutrient deficiencies, at least in selected habitats. Advances in endoscopie methods may lead to a better understanding of the life within the sea ice.Paper presented at the Symposium on Polar regions: the challenge for biological and ecological research organised by the Swiss Committee for Polar Research, Basel on 2 October 1992  相似文献   

18.
In polar seas, ice algal communities can acclimate to extremely low light conditions. Reduced acclimation to shade in ice algal communities, as a result of shortened ice seasons at the lower latitude limits of sea ice distribution, has been suggested as advantageous for avoiding strong photoinhibition when cells are released into high light levels at the water’s surface. Thermal dissipation of excess energy by xanthophyll cycle pigments in the de-epoxidated state may occur in ice algal communities released from retreating sea ice. A light exposure experiment was conducted on ice algal communities obtained from sea ice at Saroma-Ko Lagoon in Hokkaido, Japan. Photoprotective responses to direct sunlight were examined through non-photochemical quenching (NPQ) of chlorophyll fluorescence and xanthophyll pigments. De-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT) occurred rapidly, and NPQ showed a dynamic response to high light exposure. The linear relationship between the ratio of DT to chlorophyll a and NPQ followed a steeper slope than previously observed for mesophilic diatoms. The steeper slope could be explained by an apparent increase in DT for the mesophilic diatoms and induction of NPQ in response to low temperatures only in the ice algal communities. Enhanced production of DT in mesophilic diatoms could be the result of de-epoxidation of DD plus de novo synthesis, and the enhancement of NPQ might be caused by low temperature stress in the ice algae. Although the response of NPQ might be related to temperature, NPQ independent of DT synthesis should also be studied.  相似文献   

19.
Bottom trawling has widespread impacts on benthic communities and habitats. It is argued that the impact of chronic bottom trawling on benthic infauna depends on the natural disturbance levels to which benthic communities are adapted. We analysed biomass, production and size structure of two communities from a muddy and a sandy habitat, in relation to quantified gradients of trawling disturbance on real fishing grounds. We used an allometric relationship between body mass and individual production to biomass ratio to estimate community production. Chronic trawling had a negative impact on the biomass and production of benthic communities in the muddy habitat, while no impact was identified on benthic communities from the sandy habitat. These differences are the result of differences in size structure within the two communities that occur in response to increasing trawling disturbance.  相似文献   

20.
Biological characteristics of ice-associated algal communities were studied in Darnley Bay (western Canadian Arctic) during a 2-week period in July 2008 when the landfast ice cover had reached an advanced stage of melt. We found two distinct and separate algal communities: (1) an interior ice community confined to brine channel networks beneath white ice covers; and (2) an ice melt water community in the brackish waters of both surface melt ponds and the layer immediately below the ice cover. Both communities reached maximum chlorophyll?a concentrations of about 2.5?mg?m?3, but with diatoms dominating the interior ice while flagellates dominated the melt water community. The microflora of each community was diverse, containing both unique and shared algal species, the latter suggesting an initial seeding of the ice melt water by the bottom ice community. Absorption characteristics of the algae indicated the presence of mycosporine-like amino acids (MAAs) and carotenoid pigments as a photoprotective strategy against being confined to high-light near-surface layers. Although likely not contributing substantially to total annual primary production, these ice-associated communities may play an important ecological role in the Arctic marine ecosystem, supplying an accessible and stable food source to higher trophic levels during the period of ice melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号