首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sprouty (SPRY) protein negatively modulates fibroblast growth factor and epidermal growth factor actions. We showed that human SPRY2 inhibits cell growth and migration in response to serum and several growth factors. Using rat intestinal epithelial (IEC-6) cells, we investigated the involvement of the Rho family of GTPases, RhoA, Rac1, and cdc42 in SPRY2-mediated inhibition of cell migration and proliferation. The ability of TAT-tagged SPRY2 to inhibit proliferation and migration of IEC-6 cells transfected with constitutively active mutants of RhoA(G14V), Rac1(G12V), and cdc42 (F28L) was determined. Constitutively active RhoA(G14V), Rac1(G12V), or cdc42(F28L) did not protect cells from the anti-proliferative actions of TAT-SPRY2. The ability of TAT-hSPRY2 to inhibit migration was not altered by of RhoA(G14V) and cdc42(F28L). However, Rac1(G12V) obliterated the ability of SPRY2 to inhibit cell autonomous or serum-induced migration. Also, the activation of endogenous Rac1 was attenuated by TAT-SPRY2. Thus, SPRY2 mediates its anti-migratory actions by inhibiting Rac1 activation.  相似文献   

2.
Two-step engulfment of apoptotic cells   总被引:1,自引:0,他引:1  
Apoptotic cells expose phosphatidylserine on their surface as an "eat me" signal, and macrophages respond by engulfing them. Although several molecules that specifically bind phosphatidylserine have been identified, the molecular mechanism that triggers engulfment remains elusive. Here, using a mouse pro-B cell line, Ba/F3, that grows in suspension, we reconstituted the engulfment of apoptotic cells. The parental Ba/F3 cells did not engulf apoptotic cells. Ba/F3 transformants expressing T cell immunoglobulin- and mucin-domain-containing molecule 4 (Tim4), a type I membrane protein that specifically binds phosphatidylserine, efficiently bound apoptotic cells in a phosphatidylserine-dependent manner but did not engulf them. However, Ba/F3 transformants expressing both Tim4 and the integrin α(v)β(3) complex bound to and engulfed apoptotic cells in the presence of milk fat globule epidermal growth factor factor VIII (MFG-E8), a secreted protein that can bind phosphatidylserine and integrin α(v)β(3). These results indicate that the engulfment of apoptotic cells proceeds in two steps: Tim4 tethers apoptotic cells, and the integrin α(v)β(3) complex mediates engulfment in coordination with MFG-E8. A similar two-step engulfment of apoptotic cells was observed with mouse resident peritoneal macrophages. Furthermore, the Tim4/integrin-mediated engulfment by the Ba/F3 cells was enhanced in cells expressing Rac1 and Rab5, suggesting that this system well reproduces the engulfment of apoptotic cells by macrophages.  相似文献   

3.
Apoptosis or programmed cell death occurs in multicellular organisms throughout life. The removal of apoptotic cells by phagocytes prevents secondary necrosis and inflammation and also plays a key role in tissue remodeling and regulating immune responses. The molecular mechanisms that regulate the engulfment of apoptotic cells are just beginning to be elucidated. Recent genetic studies in the nematode Caenorhabditis elegans have implicated at least six genes in the removal of apoptotic cell corpses. The gene products of ced-2, ced-5, and ced-10 are thought to be part of a pathway that regulates the reorganization of the cytoskeleton during engulfment. The adapter proteins CrkII and Dock180 and the small GTPase Rac represent the mammalian orthologues of the ced-2, ced-5 and ced-10 gene products, respectively. It is not known whether CrkII, Dock180, or Rac proteins have any role during engulfment in mammalian cells. Here we show, using stable cell lines and transient transfections, that overexpression of wild-type CrkII or an activated form of Rac1 enhances engulfment. Mutants of CrkII failed to mediate this increased engulfment. The higher CrkII-mediated uptake was inhibited by coexpression of a dominant negative form of Rac1 but not by a dominant a negative Rho protein; this suggested that Rac functions downstream of CrkII in this process, which is consistent with genetic studies in the worm that place ced-10 (rac) downstream of ced-2 (crk) in cell corpse removal. Taken together, these data suggest that CED-2/CrkII and CED-10/Rac are part of an evolutionarily conserved pathway in engulfment of apoptotic cells.  相似文献   

4.
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/-) macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/-) macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.  相似文献   

5.
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is critical for caspase-1 activation and the proteolytic processing of pro-IL-1β. However, the mechanism that regulates NLRP3 inflammasome activation remains unclear. In this paper, we demonstrate that tripartite-motif protein 30 (TRIM30) negatively regulates NLRP3 inflammasome activation. After stimulation with ATP, an agonist of the NLRP3 inflammasome, knockdown of TRIM30 enhanced caspase-1 activation and increased production of IL-1β in both J774 cells and bone marrow-derived macrophages. Similarly with ATP, knockdown of TRIM30 increased caspase-1 activation and IL-1β production triggered by other NLRP3 inflammasome agonists, including nigericin, monosodium urate, and silica. Production of reactive oxygen species was increased in TRIM30 knockdown cells, and its increase was required for enhanced NLRP3 inflammasome activation, because antioxidant treatment blocked excess IL-1β production. Conversely, overexpression of TRIM30 attenuated reactive oxygen species production and NLRP3 inflammasome activation. Finally, in a crystal-induced NLRP3 inflammasome-dependent peritonitis model, monosodium urate-induced neutrophil flux and IL-1β production was reduced significantly in TRIM30 transgenic mice as compared with that in their nontransgenic littermates. Taken together, our results indicate that TRIM30 is a negative regulator of NLRP3 inflammasome activation and provide insights into the role of TRIM30 in maintaining inflammatory responses.  相似文献   

6.
Xavier MJ  Williams MJ 《PloS one》2011,6(5):e19504

Background

When the parasitoid wasp Leptopilina boulardi lays an egg in a Drosophila larva, phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. The Drosophila β-integrin Myospheroid (Mys) is necessary for lamellocytes to adhere to the cellular capsule surrounding L. boulardi eggs. Integrins are heterodimeric adhesion receptors consisting of α and β subunits, and similar to other plasma membrane receptors undergo ligand-dependent endocytosis. In mammalian cells it is known that integrin binding to the extracellular matrix induces the activation of Rac GTPases, and we have previously shown that Rac1 and Rac2 are necessary for a proper encapsulation response in Drosophila larvae. We wanted to test the possibility that Myospheroid and Rac GTPases interact during the Drosophila anti-parasitoid immune response.

Results

In the current study we demonstrate that Rac1 is required for the proper localization of Myospheroid to the cell periphery of haemocytes after parasitization. Interestingly, the mislocalization of Myospheroid in Rac1 mutants is rescued by hyperthermia, involving the heat shock protein Hsp83. From these results we conclude that Rac1 and Hsp83 are required for the proper localization of Mys after parasitization.

Significance

We show for the first time that the small GTPase Rac1 is required for Mysopheroid localization. Interestingly, the necessity of Rac1 in Mys localization was negated by hyperthermia. This presents a problem, in Drosophila we quite often raise larvae at 29°C when using the GAL4/UAS misexpression system. If hyperthermia rescues receptor endosomal recycling defects, raising larvae in hyperthermic conditions may mask potentially interesting phenotypes.  相似文献   

7.
The biochemical role of guanine nucleotide exchange factors (GEFs) in catalyzing small GTPase GDP-GTP exchange is thought to be twofold: stimulation of GDP dissociation and stabilization of a nucleotide-free GTPase intermediate. Here we report that TrioN, a Dbl family GEF, activates Rac1 by facilitating GTP binding to, as well as stimulating GDP dissociation from, Rac1. The TrioN-catalyzed GDP dissociation is dependent upon the structural nature and the concentration of free nucleotide, and nucleotide binding serves as the rate-limiting step of the GEF reaction. The TrioN-stimulated nucleotide exchange may undergo a novel two nucleotide-one G-protein intermediate involving two cryptic subsites on Rac1 induced by the GEF, with one subsite contributing to the recognition of the beta/gamma phosphates of the incoming GTP and another to the binding of the guanine base of the leaving GDP. We propose that the Rac GEF reaction may proceed by competitive displacement of bound GDP by GTP through a transient intermediate of GEF-[GTP-Rac-GDP].  相似文献   

8.
ABCA1 and the engulfment of apoptotic cells   总被引:6,自引:0,他引:6  
Programmed cell death is one of the major devices controlling cellular homeostasis. However, the generation of cell debris that follows the execution phase of apoptosis has to be backed up by their efficient removal by phagocyte. This highly dynamic process requires the concerted action of a number of surface molecules able to recognize early signals of membrane modifications on the apoptotic prey. Among those, the loss of phospholipid asymmetry and exposure of phosphatidylserine on the prey to be is determinant to engage phagocyte receptors and trigger the removal of corpses. A loss of membrane lipid asymmetry occurs also on the phagocyte determining its efficiency as an undertaker. Here we will discuss how, in our mind, the ATP binding cassette transporter, ABCA1, by its action on the arrangement of lipids at the phagocyte membrane, may actively promote their competence to engulf.  相似文献   

9.
10.
Efficient apoptotic cell engulfment is important for both tissue homeostasis and immune response in mammals. In the present study, we report that Beclin 1 (a regulator of autophagy) is required for apoptotic cell engulfment. The engulfment process was largely abolished in Beclin 1 knock-out cells, and Beclin 1 knockdown significantly decreased apoptotic cell internalization in macrophage and fibroblast cell lines. Beclin 1 was recruited to the early phagocytic cup along with the generation of phosphatidylinositol 3-phosphate and Rac1, which regulates actin dynamics in lamellipodia. No lamellipodia were formed in Beclin 1 knock-out cells, and Beclin 1 knockdown completely inhibited the promotion of engulfment by ectopic expression of Rac1. Beclin 1 was co-immunoprecipitated with Rac1. These data indicate that Beclin 1 coordinates actin dynamics and membrane phospholipid synthesis to promote efficient apoptotic cell engulfment.  相似文献   

11.
Calcineurin negatively regulates TLR-mediated activation pathways   总被引:2,自引:0,他引:2  
In innate immunity, microbial components stimulate macrophages to produce antimicrobial substances, cytokines, other proinflammatory mediators, and IFNs via TLRs, which trigger signaling pathways activating NF-kappaB, MAPKs, and IFN response factors. We show in this study that, in contrast to its activating role in T cells, in macrophages the protein phosphatase calcineurin negatively regulates NF-kappaB, MAPKs, and IFN response factor activation by inhibiting the TLR-mediated signaling pathways. Evidence for this novel role for calcineurin was provided by the findings that these signaling pathways are activated when calcineurin is inhibited either by the inhibitors cyclosporin A or FK506 or by small interfering RNA-targeting calcineurin, and that activation of these pathways by TLR ligands is inhibited by the overexpression of a constitutively active form of calcineurin. We further found that IkappaB-alpha degradation, MAPK activation, and TNF-alpha production by FK506 were reduced in macrophages from mice deficient in MyD88, Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF), TLR2, or TLR4, whereas macrophages from TLR3-deficient or TLR9 mutant mice showed the same responses to FK506 as those of wild-type cells. Biochemical studies indicate that calcineurin interacts with MyD88, TRIF, TLR2, and TLR4, but not with TLR3 or TLR9. Collectively, these results suggest that calcineurin negatively regulates TLR-mediated activation pathways in macrophages by inhibiting the adaptor proteins MyD88 and TRIF, and a subset of TLRs.  相似文献   

12.
Collapsin response mediator protein-2 (CRMP-2) plays a key role in axonal development by regulating microtubule dynamics. However, the molecular mechanisms underlying this function have not been clearly elucidated. In this study, we demonstrated that hCRMP-2, specifically amino acid residues 480–509, is essential for stimulating tubulin GTPase activity. We also found that the GTPase-activating protein (GAP) activity of hCRMP-2 was important for microtubule assembly and neurite formation in differentiated PC12 pheochromocytoma cell lines. Mutant hCRMP-2, lacking arginine residues responsible for GAP activity, inhibited microtubule assembly and neurite formation. Interestingly, we found that the N-terminal region (amino acids150–299) of hCRMP-2 had an inhibitory role on GAP activity via a direct interaction with the C-terminal region (amino acids 480–509). Our results suggest that CRMP-2 as a tubulin direct binder may be a GAP of tubulin in neurite formation and that its GAP activity may be regulated by an intramolecular interaction with an N-terminal inhibitory region.  相似文献   

13.
The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the alphav beta3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.  相似文献   

14.
Cell migration is an integrated process that involves cell adhesion, protrusion and contraction. We recently used CAS (Crk-associated substrate, 130CAS)-deficient mouse embryo fibroblasts (MEFs) to examined contribution made to v-Crk to that process via its interaction with Rac1. v-Crk, the oncogene product of avian sarcoma virus CT10, directly affects membrane ruffle formation and is associated with Rac1 activation, even in the absence of CAS, a major substrate for Crk. In CAS-deficient MEFs, cell spreading and lamellipodium dynamics are delayed; moreover, Rac activation is significantly reduced, and it is no longer targeted to the membrane. However, expression of v-Crk by CAS-deficient MEFs increased cell spreading and active lamellipodium protrusion and retraction. v-Crk expression appears to induce Rac1 activation and its targeting to the membrane, which directly affects membrane dynamics and, in turn, cell migration. It thus appears that v-Crk/Rac1 signaling contributes to the regulation of membrane dynamics and cell migration, and that v-Crk is an effector molecule for Rac1 activation that regulates cell motility.  相似文献   

15.
Cell migration is an integrated process that involves cell adhesion, protrusion and contraction. We recently used CAS (Crk-associated substrate, 130CAS)-deficient mouse embryo fibroblasts (MEFs) to examined contribution made to v-Crk to that process via its interaction with Rac1. v-Crk, the oncogene product of avian sarcoma virus CT10, directly affects membrane ruffle formation and is associated with Rac1 activation, even in the absence of CAS, a major substrate for Crk. In CAS-deficient MEFs, cell spreading and lamellipodium dynamics are delayed; moreover, Rac activation is significantly reduced and it is no longer targeted to the membrane. However, expression of v-Crk by CAS-deficient MEFs increased cell spreading and active lamellipodium protrusion and retraction. v-Crk expression appears to induce Rac1 activation and its targeting to the membrane, which directly affects membrane dynamics and, in turn, cell migration. It thus appears that v-Crk/Rac1 signaling contributes to the regulation of membrane dynamics and cell migration, and that v-Crk is an effector molecule for Rac1 activation that regulates cell motility.Key words: v-Crk, Rac, lamellipodia dynamics, cell migration, p130CASCell migration is a central event in a wide array of biological and pathological processes, including embryonic development, inflammatory responses, angiogenesis, tissue repair and regeneration, cancer invasion and metastasis, osteoporosis and immune responses.1,2 Although the molecular basis of cell migration has been studied extensively, the underlying mechanisms are still not fully understood. It is known that cell migration is an integrated process that involves formation of cell adhesions and/or cell polarization, membrane protrusion in the direction of migration (e.g., filopodium formation and lamellipodium extension), cell body contraction and tail detachment.13 Formation of cell adhesions, including focal adhesions, fibrillar adhesions and podosomes are the first step in cell migration. Cell adhesions are stabilized by attachment to the extracellular matrix (ECM) mediated by integrin transmembrane receptors, which are also linked to various cytoplasmic proteins and the actin cytoskeleton, which provide the mechanical force necessary for migration.2,4 The next steps in the process of cell migration are filopodium formation and lamellipodium extension. These are accompanied by actin polymerization and microtubule dynamics, which also contribute to the control of cell adhesion and migration.5Focal adhesions are highly dynamic structures that form at sites of membrane contact with the ECM and involve the activities of several cellular proteins, including vinculin, focal adhesion kinase (FAK), Src family kinase, paxillin, CAS (Crk-associated substrate, p130CAS) and Crk.6 A deficiency in focal adhesion protein is associated with the severe defects in cell motility and results in embryonic death. For example, FAK deficiency disrupts mesoderm development in mice and delays cell migration in vitro,7 which reflects impaired assembly and disassembly the focal adhesions.8 In addition, mouse embryonic fibroblasts (MEFs) lacking Src kinase showed a reduced rate of cell spreading that resulted in embryonic death.9 Taken together, these findings strongly support the idea that cell adhesion complexes play crucial roles in cell migration.CAS is a hyperphosphorylated protein known to be a major component of focal adhesion complexes and to be involved in the transformation of cells expressing v-Src or v-Crk.10 CAS-deficient mouse embryos die in utero and show marked systematic congestion and growth retardation,4 while MEFs lacking CAS show severely impaired formation and bundling of actin stress fibers and delayed cell motility.4,11,12 Conversely, transient expression of CAS in COS7 cells increases cell migration.11 Crk-null mice also exhibit lethal defects in embryonic development,13 which is consistent with the fact that CAS is a major substrate for v-Crk, and both CAS and v-Crk are necessary for induction of cell migration.14 v-Crk consists of a viral gag sequence fused to cellular Crk sequences, which contain Src homology 2 (SH2) and SH3 domains but no kinase domain, and both CAS and paxillin bind to SH2 domains.12,15,16 Despite the absence of a kinase domain, cell expressing v-Crk show upregulation of tyrosine phosphorylation of CAS, FAK and paxillin, which is consistent with v-Crk functioning as an adaptor protein.17 Moreover, this upregulation of tyrosine phosphorylation correlates well with the transforming activity of v-Crk.17 By contrast, tyrosine phosphorylation of FAK and CAS is diminished in Src kinase-deficient cells expressing v-Crk, and they are not targeted to the membrane, suggesting v-Crk signaling is Src kinase-dependent. After formation of the CAS/v-Crk complex, v-Crk likely transduces cellular signaling to Src kinase and FAK.12 Notably, tyrosine phosphorylation of FAK and cell migration and spreading are all enhanced when v-Crk is introduced into CAS-deficient MEFs.12 We therefore suggest that v-Crk activity, but not cellular Crk activity, during cell migration and spreading is CAS-independent.Membrane dynamics such as lamellipodium protrusion and membrane ruffling reportedly involve Rac1,18 α4β1 integrin,19 Arp2/3,6 and N-WASP,20 and are enhanced in v-Crk-expressing CAS-deficient MEFs.21 Moreover, expression in those cells of N17Rac1, a dominant defective Rac1 mutant, abolished membrane dynamics at early times and delayed cell migration.21 v-Crk-expressing, CAS-deficient MEFs transfected with N17Rac1 did not begin spreading until one hour after being plated on fibronectin, and blocking Rac activity suppressed both membrane dynamics and cell migration. We therefore suggest that v-Crk is involved in cell attachment and spreading, and that this process is mediated by Rac1 activation. In addition, v-Crk expression apparently restores lamellipodium formation and ruffle retraction in CAS-deficient MEFs. Thus v-Crk appears to participate in a variety cellular signaling pathways leading to cell spreading, Rac1 activation, membrane ruffling and cell migration, even in the absence of CAS, its major substrate protein.In fibroblasts, the Rho family of small GTP-binding proteins (e.g., Cdc42, Rac and Rho) functions to control actin cytoskeleton turnover, including filopodium extension, lamellipodium formation and generation of actin stress fibers and focal adhesions.22 These GTPases function in a cascade, such that activation of Cdc42 leads to activation of Rac1, which in turn activates Rho.22 Once activated, Rho controls cell migration. Cell adhesion to ECM leads to the translocation of Rac1 and Cdc42 from the cytosol to the plasma membrane,23 where they regulate actin polymerization at the leading edge.19,24 Dominant negative Rac and Cdc42 mutants inhibit the signaling to cell spreading initiated by the interaction of integrin with ECM.24 The fact that cellular levels of activated Rac are higher in cells adhering to ECM than in suspended cells further suggests that activation of Rac and Cdc42 is a critical step leading to membrane protrusion and ruffle formation. It is noteworthy in this regard that v-Crk is able to induce Rac activation and its translocation to plasma membrane.21Overall, the findings summarized in this article demonstrate that v-Crk participates in several steps leading to cell adhesion and spreading (Fig. 1), and the targeting of v-Crk to focal adhesion sites appears to be a prerequisite for regulation of cell migration and spreading via Rac activation. To fully understand its function, however, it will be necessary to clarify the role of v-Crk in Rac1 and Cdc42 activation initiated by integrin-ECM interactions.Open in a separate windowFigure 1Schematic diagram of v-Crk signaling in MEFs. Cell adhesion signaling initiated by the integrin-ECM interaction triggers v-Crk signaling mediated by Src kinase, after which focal adhesion proteins are tyrosine phosphorylated. These events lead to translocation of Rac from the cytosol to the membrane, where it promotes membrane protrusion and ruffle formation. Under basal conditions, Rac is bound with GDP and is inactive. Upon stimulation, Rac activation is mediated by guanine nucleotide exchange factors (GEFs) that stimulate the release of bound GDP and the binding of GTP. Activation of Rac is transient, however, as it is inactivated by GTPase activating protein (GAP).  相似文献   

16.
《Cellular signalling》2014,26(1):49-55
Interleukin 1 (IL-1) triggers the internalization of its cognate receptor from the plasma membrane. We recently demonstrated that this internalization is of critical importance for the IL-1-induced gene expression. In this study we report that the IL-1-induced activation of the small GTPase Rac1 requires receptor endocytosis. We further show that the depletion of Rac1 reduces the IL-1-dependent gene expression without affecting signaling events that are initiated at the plasma membrane. Collectively, we provide evidence for a key role of Rac1 in a pathway that regulates IL-1-induced gene expression depending on receptor endocytosis.  相似文献   

17.
Removal of apoptotic cells is critical for the physiological well-being of the organism and defects in corpse removal have been linked to disease states. Genes regulating corpse recognition and internalization have been identified, but few molecules involved in the processing of internalized corpses are known. Through a combination of targeted and unbiased reverse genetic screens in Caenorhabditis elegans, and studies in mammalian cells, we have identified genes required for maturation of apoptotic-cell-containing phagosomes. We have further ordered these candidates, which include the GTPases RAB-5 and RAB-7 and the HOPS complex, into a coherent linear pathway for the maturation of apoptotic cells within phagosomes. In depth analysis of two additional candidate genes, the phosphatidylinositol 3 kinase (PI(3)K) vps-34 (A001762) and dyn-1/dynamin, showed an accumulation of internalized, but undegraded, corpses within abnormal Rab5-negative phagosomes. We ordered these candidates in our pathway, with DYN-1 functioning upstream of VPS-34 in the recruitment and/or retention of RAB-5 to the phagosome. Finally, we have also identified a previously undescribed biochemical complex containing Vps34, dynamin and Rab5(GDP), thus providing a mechanism for Rab5 recruitment to the nascent phagosome.  相似文献   

18.
The docking protein Gab2 is overexpressed in several human malignancies, including breast cancer, and is associated with increased metastatic potential. Here we report that Gab2 overexpression in MCF-10A mammary epithelial cells led to delayed cell spreading, a decrease in stress fibers and mature focal adhesions, and enhanced cell migration. Expression of a Gab2 mutant uncoupled from 14-3-3-mediated negative feedback (Gab2(2xA)) led to a more mesenchymal morphology and acquisition of invasive potential. Expression of either Gab2 or Gab2(2xA) led to decreased activation of RhoA, but only the latter increased levels of Rac-GTP. Expression of constitutively active RhoA in MCF-10A/Gab2 cells restored stress fibers and focal adhesions, indicating that Gab2 signals upstream of RhoA to suppress these structures. Mutation of the two Shp2-binding sites to phenylalanine (Gab2(ΔShp2)) markedly reduced the effects of Gab2 on cellular phenotype and RhoA activation. Expression of Gab2 or Gab2(2xA), but not Gab2(ΔShp2), promoted Vav2 phosphorylation and plasma membrane recruitment of p190A RhoGAP. Knockdown of p190A RhoGAP reversed Gab2-mediated effects on stress fibers and focal adhesions. The identification of a novel pathway downstream of Gab2 involving negative regulation of RhoA by p190A RhoGAP sheds new light on the role of Gab2 in cancer progression.  相似文献   

19.
The rapid and efficient phagocytosis of apoptotic cells plays a critical role in preventing secondary necrosis, inflammation as well as in tissue remodeling and regulating immune responses. However, the molecular details of engulfment are just beginning to be elucidated. Among the Rho family GTPases, previous studies have implicated a role for Rac and Cdc42 in the uptake of apoptotic cells by phagocytes, yet the role of Rho has remained unclear. Here, we present evidence that Rho-GTP levels decrease during engulfment. RhoA seems to negatively affect basal engulfment, such that inhibition of Rho-mediated signaling in phagocytes enhanced the uptake of apoptotic targets. Activation of endogenous Rho or overexpression of constitutively active forms of Rho also inhibited engulfment. By testing mutants of RhoA that selectively activate downstream effectors, the Rho-kinase seemed to be primarily responsible for this inhibitory effect. Taken together, these data suggest that inhibition of Rho- and Rho-kinase-mediated signaling might be important during engulfment, which could have important implications for several clinical trials involving inhibition of the Rho kinase.  相似文献   

20.
Rac is activated in response to various stimuli including growth factors and by adhesion to the extracellular matrix. However, how these stimuli ultimately result in Rac activation is poorly understood. The increase in intracellular calcium [Ca2+]i represents a ubiquitous second messenger system in cells, linking receptor activation to downstream signaling pathways. Here we show that elevation of [Ca2+]i, either artificially or by thrombin receptor activation, potently induces Rac activation. Lamellipodia formation induced by artificial elevation of [Ca2+]i is blocked by inhibition of Rac signaling, indicating that calcium-induced cytoskeletal changes are controlled by the activation of Rac. Calcium-dependent Rac activation was dependent on the activation of a conventional protein kinase C. Furthermore, both increased [Ca2+]i and protein kinase C activation induce phosphorylation of RhoGDI alpha and induce the translocation of cytosolic Rac to the plasma membrane. Intracellular calcium signaling may thus contribute to the intracellular localization and activation of Rac to regulate the cytoskeletal changes in response to receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号