首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronogenesis during posthatching development of the procerebrum of the terrestrial snail Helix lucorum was analyzed using bromodeoxyuridine immunohistochemistry to label proliferating cells. Comparison of the distribution of labeled cells in a series of animals which differed in age at the time of incubation with bromodeoxyuridine, in survival time after incubation, and in age at sacrifice reveals a clear pattern and developmental sequence in neuron origin. First, the proliferating cells are located only at the apical portion of the procerebrum. Second, cells which are produced at any particular age remain, for the most part, confined to a single layer in the procerebrum. Third, as development proceeds, each layer of previously produced neurons is displaced toward the basal part of the procerebrum by the production of additional neurons. Our results suggest that the vast majority of the neurons (probably about 70–80%) of the snail procerebrum are produced during the first 1–2 months of posthatching development. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 271–276, 1998  相似文献   

2.
The aim of the present study was to examine the distribution of cells expressing connexin 26 (Cx26) in the suboesophageal visceral, left and right parietal and left and right pleural ganglia of the snail Helix aspersa by immunocytochemistry. Altogether we have found approximately 452 immunoreactive neurons which represent the 4.7% of the total neurons counted. The stained large neurons (measured diameter 55-140 microm) occurred mostly on the peripheral surface of the ganglia while the small immunostained cells (5-25 microm diameter) were observed in groups near the neuropil. The number of large neurons giving positive Cx26-like immunostaining was small in comparison with that for medium (30-50 microm diameter) and small sized cells. The expression of Cx26 was also observed in the processes of glia cells localized among neurons somata and in the neuropil showing that the antiserum recognized epitopes in both protoplasmic and fibrous glia cells of Helix aspersa. The neuropils of all ganglia showed fibers densely immunostained. While we have observed a good specificity for Cx26-antiserum in neurons, a lack of reaction for Cx43 antiserum was observed in neurons and glia cells. The reaction for enolase antiserum in neurons was light and non-specific and a lack of reaction in glia cells and processes for GFAP antiserum was observed. Although the percentage of positive neurons for Cx26 antiserum was low is suggested that in normal physiological conditions or under stimulation the expression of connexin could be increased. The observed results can be considered of interest in the interpretation of Helix aspersa elemental two neuron networks synchronizing activity, observed under applied extremely low frequency magnetic fields.  相似文献   

3.
Dopamine induces a decrease in voltage-dependent Ca2+ current in identified neurons of the snail H. aspersa. This effect is blocked by intracellular injection of activated B. pertussis toxin and of an affinity-purified antibody against the alpha subunit of bovine Go protein. The dopamine effect is mimicked by intracellular injection of mammalian alpha o. In snail nervous tissue, pertussis toxin ADP-ribosylates a single protein band on SDS gels, and this band is recognized in immunoblots by the anti-alpha o antibody. We propose that this is a 40 kd alpha subunit of a molluscan G protein immunologically related to alpha o and that it mediates the effect of dopamine on Ca2+ currents in identified snail neurons.  相似文献   

4.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   

5.
Reproductive traits of the land snail Helix aspersa Mtiller were investigated under artificial conditions from two samples, one collected from a population exposed to unpredictable human pressures in its natural environment, i.e. a recently created polders area with intensive agriculture, and the other from a snail farm in which animals were reared under constant conditions denned as 'optimal' for growth and reproduction. Results were compared with data collected from natural populations of the same region (Brittany) and from habitats spanning the environmental heterogeneity of the range of the species. A large part of the variation among populations could be explained by different phenotypic covariances between shell size, clutch size and egg size, but not by the number of clutches per snail. Thus, the higher egg production of snails from the polders was related to (i) a strong correlation between clutch size and shell size, shell size being in the upper limit of the overall range for the region concerned; (ii) an uncommonly low egg weight in comparison with the 'norm' of Helix aspersa , this trait seeming to be involved in a trade-off with clutch size. Second clutches were smaller than the first ones, but their eggs were significantly heavier. This difference may be linked to a size-dependent mortality of juveniles during winter which arises in all populations in which hibernation occurs as an adaptation to low temperatures. In addition to the selective regime usually involved for populations of helicid snails from Western Europe, several unpredictable mortality factors occurred in the polders area: herbicide and pesticide treatments (lethal for young snails), human predation (lethal for adults) and burning (letiial for all snails). Life-history patterns of Helix aspersa are discussed in relation to its ability to successfully colonize a large range of habitats modified by humans, to such an extent that it can become a pest.  相似文献   

6.
In adulthood, songbird species vary considerably in the extent to which they rely on auditory feedback to maintain a stable song structure. The continued recruitment of new neurons into vocal motor circuitry may contribute to this lack of resiliency in song behavior insofar as new neurons that are not privy to auditory instruction could eventually corrupt established neural function. In a first step to explore this possibility, we used a comparative approach to determine if species differences in the rate of vocal change after deafening in adulthood correlate positively with the extent of HVc neuron addition. We confirmed previous reports that deafening in adulthood changes syllable phonology much more rapidly in bengalese finches than in zebra finches. Using [(3)H]thymidine autoradiography to identify neurons generated in adulthood, we found that the proportion of new neurons in the HVc one month after labeling was nearly twice as great in bengalese than in zebra finches. Moreover, among the subset of HVc vocal motor neurons that project to the robust nucleus of the archistriatum, the incidence of [(3)H]thymidine-labeled neurons was nearly three times as great in bengalese than in zebra finches. This correlation between the proportion of newly added neurons and the rate of song deterioration supports the hypothesis that HVc neuron addition may disrupt stable adult song production if new neurons cannot be "trained" via auditory feedback.  相似文献   

7.
Several parameters were studied in an experiment on intracerebral neural grafts in young snails (Helix aspersa aspersa) in which growth was blocked by removal of the mesocerebrum. The results demonstrate that transplantation of adult mesocerebrum neurons from another subspecies (H aspersa maxima) into the location of the ablated mesocerebrum in the brain of a young juvenile host, leads to functional recovery. In addition, double labelling with charcoal for topographical localisation and fast blue for observation of survival and integration of fluorescent cells within the host brain demonstrated the tolerance to the grafted cells and the successful growth of the chimeric brain. The surviving neurons were mainly located in the median region of the reconstituted brain near the islets of metacerebrum neurons. It is possible that some trophic factors promote growth in the host brain and development of the grafted cells. However, resumption of growth requires the presence of the neurosecretory cells particular to the mesocerebrum which secrete growth hormone. The fast-blue dye, which is still detectable after several months, is useful to track single cells for the study of the functional capacities of the different populations of neurons in the cerebral ganglia and for exploring neuronal replacement strategies in the damaged brain.  相似文献   

8.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second‐order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor‐evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle‐averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity. © 2003 Wiley Periodicals, Inc. J Neurobiol 58: 369–378, 2004  相似文献   

9.
This immunocytochemical study of 5-HT neurons and fibers in the nervous system of C. aspersa corroborate previous findings and describe new 5-HT neurons and their connections, mainly between the central nervous system and the tentacular sensory organs. We found a number of networks, fascicles, and neurons that show constant and symmetrical location. Three networks were found at the tip of the posterior tentacle: underlying the olfactory epithelium, in the neuropil of the tentacular ganglion (TG), and in the ocular capsule. The TG also contains a ventral 5-HT fascicle. A group of 30-40 serotoninergic fibers run through the tentacular connective from the postcerebrum to the tentacular ganglion. This 5-HT fascicle has a lateral position in the postcerebrum (lateral fascicle of the postcerebrum) and a subcortical location in the procerebrum (subcortical fascicle of the procerebrum). The optic nerve also has a small group of 5-HT fibers. Seven serotoninergic neurons were found in each cerebral ganglion: two giant neurons, one medium-sized, and four small neurons. Three different types of fascicles are in the postcerebrum: fascicles proceeding from the suboesophageal connectives, a lateral fascicle, and a commisural fascicle. Each cerebral ganglion region (pro-, meso- and postcerebrum) has a 5-HT network with a particular pattern of distribution and morphology. The suboesophageal ganglia show the highest concentration of 5-HT neurons (large, medium-sized, and small neurons).  相似文献   

10.
The aim of this work was to characterize several ionic channels in nervous cells of the suboesophageal visceral, left and right parietal, and left and right pleural brain ganglia complex of the snail Helix aspersa by immunocytochemistry. We have studied the immunostaining reaction for a wide panel of eleven polyclonal antibodies raised against mammal antigens as follows: voltage-gated-Na+ channel; voltage-gated-delayed-rectifier-K+ channel; SK2-small-conductance-Ca2+-dependent-K+ channel apamin sensitive; SK3 potassium channel; charybdotoxin-sensitive voltage-dependent potassium channel; BKCa-maxi-conductance-Ca2+-dependent-K+ channel; hyperpolarization-activated cyclic nucleotide-gated potassium channel 4; G-protein-activated inwardly rectifying potassium channel GIRK2 and voltage-gated-calcium of L, N and P/Q type channels. Our results show positive reaction in neurons, but neither in glia cells nor in processes in the Helix suboesophageal ganglia. Our results suggest the occurrence of molecules in Helix neurons sharing antigenic determinants with mammal ionic channels. The reaction density and distribution of immunoreactive staining within neurons is specific for each one of the antisera tested. The studies of co-localization of immunoreaction, on alternate serial sections of the anterior right parietal ganglion, have shown for several recognized mapped neurons that they can simultaneously be expressed among two and seven different ionic protein channels. These results are considered a key structural support for the interpretation of Helix aspersa neuron electrophysiological activity.  相似文献   

11.
A laboratory rearing system in semi-controlled conditions is proposed to facilitate the behavioural rhythms of the edible snail (Helix aspersa) and to produce a high growth rate with low variability. The growth data were used to construct a model for weight estimation based on age. The animals' live weights showed low variability (<17%) and normal distribution. The best model for estimating weight from age is the logistic model, with a high corelation coefficient (>90%), and a high level of significance for the coefficient (P < 0.0001).  相似文献   

12.
An electron microscopical study of snail neurons was undertaken to verify whether any ultrastructural alterations accompany microwave-induced electrophysiological changes observed in these neurons. Subesophageal ganglia from Helix aspersa snails were exposed to 2450 MHz microwave radiation in vitro at SAR 12.9 mW/g for 60 minutes. It was found that exposure at 21 degrees C causes minor changes in Golgi complexes and slight swelling of the endoplasmic reticulum.  相似文献   

13.
1. The presence of insulin-like substances has been demonstrated by immunocytochemistry in the central nervous system of the snail Helix aspersa. 2. The immunopositivity has been observed especially in the large perikarya of the mesocerebral green cells [the cerebral green cells (CeGC) stained in green by the alcian blue:alcian yellow technique]. 3. The removal of either the mesocerebrum or the CeGC stops the growth of the snail and induces the increase of the glycogen content in the mantle edge. 4. Our results show the existence of insulin-like material in the neurosecretory cells. Previous data having demonstrated the presence of specific binding sites to insulin in the cephalic ganglia of Helix aspersa, one may suggest that insulin could play a neuromodulatory or a neurotransmittory role in the central nervous system and might control the growth.  相似文献   

14.
This paper describes the biochemical composition of differentspecies (Helix lucorum, Helix pomatia) and sub-species of snails(Helix aspersa aspersa, Helix aspersa maxima) reared in thesame conditions with a feed (‘Helixal’) speciallydesigned for edible snails. In addition, the composition ofwild H. pomatia and H. lucorum is presented to allow comparisonbetween snails of different origins. Analyses determined thepercentages of proteins, lipids and minerals. They reveal bothsimilarities and differences in composition according to thespecies and the part analysed (whole body, pedal mass, and visceralmass). H. pomatia contains the highest percentage of mineralmatter and the lowest percentage of lipids. Surprisingly, proteincontents are slightly different between artificially rearedH. aspersa maxima of 3 months old and wild H. pomatia. The resultsmake it possible to evaluate nutritional quality of snails withthe composition of the body of four edible snail species. (Received 16 September 1996; accepted 24 May 1997)  相似文献   

15.
1. Insulin binding sites were characterized and quantified in snail (Helix aspersa) ganglia by incubation of tissue sections with 125I-porcine insulin, autoradiography with [3H]Ultrofilm, image analysis coupled to computer-assisted microdensitometry, and comparison with 125I-standards. Cellular localization was performed in the same sections by emulsion autoradiography. 2. Specific insulin binding sites were demonstrated in discretely localized groups of neurons of the cerebral, pleural, parietal, visceral, and pedal ganglia and in nerves. Scatchard analysis performed with consecutive sections from single animals revealed a single class of high-affinity insulin binding sites (Kd, 0.13 +/- 0.01 nM; Bmax, 157 +/- 10 fmol/mg protein). 3. Our results suggest that insulin may play a role as a neurotransmitter or neuromodulator in snail ganglia.  相似文献   

16.
The immunocytological method has revealed the presence of somatostatin-like substance (SSI) in the brain of the snail Helix aspersa Müller. The Cerebral Green Cells (CeGC) in the mesocerebron and some neurons in parietal and visceral ganglia react positively with an antibody raised against Vertebrate somatostatin-14. The hybridization in situ with an oligonucleotide probe labelled with 35S-dATP complementary to the 3'-coding region of rat preprosomatostatin mRNA seems to show a colocalization between synthesis and stocking sites of SSI in the nervous ganglia. These results suggest for the first time that the codage of a SSI seems to be realized in the same way in Helix aspersa and Mammals.  相似文献   

17.
The new psychotropic drug phenazepam inhibits the impulse activity of the neurons which compose visceral ganglia of the garden snail (Helix aspersa) and suppresses stimulating postsynaptic potentials arising in application of acetylcholine to the membrane of isolated neurons. The electrostimulating membrane parameters are not generally changed. Postsynaptic depression of the stimulation of the cholinoreceptive membrane is suggested to be one of the possible mechanisms of the pharmacological action of the drug.  相似文献   

18.
Effects of tetracaine and caffeine on snail neurons were studied. They displayed depolarization and an increase of membrane conductance. In addition, tetracaine diminished membrane time constant whereas caffeine augmented hyperpolarizing after-potential. It was also shown that tetracaine blocks the caffeine effect. Microwave irradiation of snail neurons enhanced membrane conductance. This effect was not observed in neurons treated with tetracaine or injected with EDTA. Analysis of these results points to intracellular free calcium as a possible trigger of snail neuron microwave response.  相似文献   

19.
Protein synthesis is downregulated during metabolic depression in a number of systems where the metabolic depression is effected by obvious extrinsic cues. The metabolic depression of the estivating land snail Helix apersa occurs in the absence of any obvious physiological stress and has an intrinsic component independent of temperature, pH, O(2) status, or osmolality. We show that this metabolic depression is accompanied by a downregulation of protein synthesis in vivo. The rate of protein synthesis decreases in two major tissues during estivation: to 23% and 53% of the awake rate in hepatopancreas and foot muscle, respectively. We show from calculations of the theoretical contribution of protein synthesis to total O(2) consumption that the depression of protein synthesis must be a significant, obligate, in vivo component of metabolic depression in H. aspersa.  相似文献   

20.
The model proposed for external TEA block of Shaker K+ channels predicts a proportional relationship between TEA sensitivity and calculated electrical distance derived from measurements of voltage dependence of TEA block. In the present study, we examined this relationship for the A-type K+ current (IA) of Helix aspersa in neuronal somata using the whole-cell patch-clamp technique. External TEA inhibited IA with strong voltage dependence, such that the TEA dissociation constant was increased at depolarized test potentials. The half-inhibition constant (V0.5) for TEA block was approximately 21 mM at 0 mV, and V0.5 increased to approximately 67 mM at 50 mV. The calculated electrical distance for TEA block suggested that TEA traversed 65% of the way into the membrane electrical field. TEA also caused significant shifts in the voltage-dependence of A-type K+ channel gating. For example, at TEA concentrations below that required to fully suppress delayed outward currents, TEA caused depolarizing shifts in the voltage-dependence of A-type channel activation, steady-state inactivation, time for removal of inactivation, and slowed channel activation kinetics. Taken together, these observations suggest that TEA biased the local field potential near voltage-sensing domains of A-type K+ channels, causing the transmembrane electrical field to be relatively hyperpolarized in the presence of TEA. In summary, the calculated electrical distance of TEA block of A-type K+ channels in H. aspersa neurons is unprecedented among other K+ channels. This raises concerns about the conventional interpretation of this value. Furthermore, the voltage-dependent properties of IA are modified by TEA at concentrations previously used to isolate delayed rectifier potassium channels (IKDR) selectively. This lack of specificity has important implications for recent, as well as future studies of IA in H. aspersa and possibly other snail neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号