首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Human memory CD4(+) T cells respond better to inflammatory CCLs/CC chemokines, CCL3 and CCL5, than naive CD4(+) T cells. We analyzed the regulatory mechanism underlying this difference. Memory and naive CD4(+) T cells expressed similarly high levels of CCR1; however, CCR5 was only expressed in memory CD4(+) T cells at low levels. Experiments using mAbs to block chemokine receptors revealed that CCR1 functioned as a major receptor for the binding of CCL5 in memory and naive CD4(+) T cells as well as the ligand-induced chemotaxis in memory CD4(+) T cells. Stimulation of memory CD4(+) T cells with CCL5 activated protein tyrosine kinase-dependent cascades, which were significantly blocked by anti-CCR1 mAb, whereas this stimulation failed to induce these events in naive CD4(+) T cells. Intracellular expressions of regulator of G protein signaling 3 and 4 were only detected in naive CD4(+) T cells. Pretreatment of cell membrane fractions from memory and naive CD4(+) T cells with GTP-gamma S inhibited CCL5 binding, indicating the involvement of G proteins in the interaction of CCL5 and its receptor(s). In contrast, CCL5 enhanced the GTP binding to G(i alpha) and G(q alpha) in memory CD4(+) T cells, but not in naive CD4(+) T cells. Thus, a failure of the ligand-induced activation of CCR1-mediated downstream signaling event as well as a deficiency of CCR5 expression may be involved in the hyporesponsiveness of naive CD4(+) T cells to CCL3 and CCL5.  相似文献   

2.
Chemokines and chemokine receptors are required for T cell trafficking and migration. Recent evidence shows that sphingosine 1-phosphate (S1P) and S1PRs are also important for some aspects of T cell migration, but how these two important receptor-ligand systems are integrated and coregulated is not known. In this study, we have investigated CCL19-CCR7 and CXCL12-CXCR4-driven migration of both splenic and peripheral lymph node (PLN) nonactivated and naive T cells, and used both S1P and the S1PR ligand, FTY720, to probe these interactions. The results demonstrate that splenic T cell migration to CCL19 or CXCL12 is enhanced by, but does not require, S1PR stimulation. In contrast, PLN T cell migration to CXCL12, but not CCL19, requires both chemokine and S1PR stimulation, and the requirement for dual receptor stimulation is particularly important for steps involving transendothelial migration. The results also demonstrate that: 1) splenic and PLN nonactivated and naive T cells use different molecular migration mechanisms; 2) CCR7 and CXCR4 stimulation engage different migration mechanisms; and 3) S1P and FTY720 have distinct S1PR agonist and antagonist properties. The results have important implications for understanding naive T cell entry into and egress from peripheral lymphoid organs, and we present a model for how S1P and chemokine receptor signaling may be integrated within a T cell.  相似文献   

3.
Recruitment of effector T cells to sites of infection or inflammation is essential for an effective adaptive immune response. The chemokine CCL5 (RANTES) activates its cognate receptor, CCR5, to initiate cellular functions, including chemotaxis. In earlier studies, we reported that CCL5-induced CCR5 signaling activates the mTOR/4E-BP1 pathway to directly modulate mRNA translation. Specifically, CCL5-mediated mTOR activation contributes to T cell chemotaxis by initiating the synthesis of chemotaxis-related proteins. Up-regulation of chemotaxis-related proteins may prime T cells for efficient migration. It is now clear that mTOR is also a central regulator of nutrient sensing and glycolysis. Herein we describe a role for CCL5-mediated glucose uptake and ATP accumulation to meet the energy demands of chemotaxis in activated T cells. We provide evidence that CCL5 is able to induce glucose uptake in an mTOR-dependent manner. CCL5 treatment of ex vivo activated human CD3(+) T cells also induced the activation of the nutrient-sensing kinase AMPK and downstream substrates ACC-1, PFKFB-2, and GSK-3β. Using 2-deoxy-d-glucose, an inhibitor of glucose uptake, and compound C, an inhibitor of AMPK, experimental data are presented that demonstrate that CCL5-mediated T cell chemotaxis is dependent on glucose, as these inhibitors inhibit CCL5-mediated chemotaxis in a dose-dependent manner. Altogether, these findings suggest that both glycolysis and AMPK signaling are required for efficient T cell migration in response to CCL5. These studies extend the role of CCL5 mediated CCR5 signaling beyond lymphocyte chemotaxis and demonstrate a role for chemokines in promoting glucose uptake and ATP production to match energy demands of migration.  相似文献   

4.
Dai P  Liu X  Li QW 《遗传》2012,34(3):289-295
胸腺中T细胞的发育及次级淋巴组织中成熟T细胞的活化均需要细胞能够对环境信号分子做出适应性的反应。在共刺激分子及细胞因子受体介导的信号参与下通过TCR(T cell receptor)及其辅助受体CD4和CD8与MHC/抗原肽复合物相互作用,可以诱导TCR信号通路激活并最终导致T细胞免疫反应的发生。Src家族激酶Lck(Lymphocyte-specific protein tyrosine kinase)和Fyn(Proto-oncogene tyrosine-protein kinase)的激活是启动TCR信号通路的关键因素。在T细胞的发育、阳性选择、初始T细胞的外周存活及由淋巴细胞缺失诱导的细胞增殖中都起着关键性的作用。研究显示,虽然这两种信号分子紧密相关,但在某些条件下Lck发挥着比Fyn更重要的作用,并且Fyn仅可以补充Lck的部分功能。文章针对这两个激酶在T细胞发育的整个过程中的作用机制进行了论述。  相似文献   

5.
戴鹏  刘欣  李庆伟 《遗传》2012,34(3):289-295
胸腺中T细胞的发育及次级淋巴组织中成熟T细胞的活化均需要细胞能够对环境信号分子做出适应性的反应。在共刺激分子及细胞因子受体介导的信号参与下通过TCR(T cell receptor )及其辅助受体CD4和CD8与MHC/抗原肽复合物相互作用, 可以诱导TCR信号通路激活并最终导致T细胞免疫反应的发生。Src家族激酶Lck(Lymphocyte-specific protein tyrosine kinase)和Fyn (Proto-oncogene tyrosine-protein kinase)的激活是启动TCR信号通路的关键因素。在T细胞的发育、阳性选择、初始T细胞的外周存活及由淋巴细胞缺失诱导的细胞增殖中都起着关键性的作用。研究显示, 虽然这两种信号分子紧密相关, 但在某些条件下Lck发挥着比Fyn更重要的作用, 并且Fyn仅可以补充Lck的部分功能。文章针对这两个激酶在T细胞发育的整个过程中的作用机制进行了论述。  相似文献   

6.
The role of TCR signals triggered by recognition of self MHCs in maintaining the survival of naive peripheral T cells remains controversial. Here we examine the role of the Src family kinases, p56(lck) (Lck) and p59(fyn) (Fyn), in the survival of naive T cells. We show that long term survival requires a combination of signals transduced by Src family kinases and signals through the IL-7R. In the absence of either one, naive T cells die slowly, but if both signals are removed, cell loss is greatly accelerated. The TCR signal can be mediated by either Fyn or Lck at wild-type levels of expression, but not by Lck alone if expressed suboptimally. The disappearance of T cells in the absence of Fyn and Lck was associated with a complete loss of TCRzeta-chain phosphorylation and down-regulation of CD5, both of which are also MHC contact dependent, indicating that the Src family kinases are critical for transducing a TCR-MHC survival signal.  相似文献   

7.
CCR9 mediates chemotaxis of thymocytes in response to CCL25/thymus-expressed chemokine, and its mRNA is selectively expressed in thymus and small intestine, the two known sites of T lymphopoiesis. To examine the expression of CCR9 during lymphocyte development, we generated polyclonal Ab that recognizes murine CCR9. CCR9 was expressed on the majority of immature CD4+CD8+ (double-positive) thymocytes, but not on immature CD4(-)CD8(-) (double-negative) thymocytes. CCR9 was down-regulated during the transition of double-positive thymocytes to the CD4+ or CD8+ (single-positive) stage, and only a minor subset of CD8+ lymph node T cells expressed CCR9. All CCR9+ thymocyte subsets migrated in response to CCL25; however, CD69+ thymocytes demonstrated enhanced CCL25-induced migration compared with CD69(-) thymocytes. Ab-mediated TCR stimulation also enhanced CCL25 responsiveness, indicating that CCL25-induced thymocyte migration is augmented by TCR signaling. Approximately one-half of all gammadeltaTCR+ thymocytes and peripheral gammadeltaTCR+ T cells expressed CCR9 on their surface, and these cells migrated in response to CCL25. These findings suggest that CCR9 may play an important role in the development and trafficking of both alphabetaTCR+ and gammadeltaTCR+ T cells.  相似文献   

8.
The active vitamin A metabolite retinoic acid (RA) imprints gut-homing specificity on lymphocytes upon activation by inducing the expression of α4β7 integrin and CCR9. RA receptor (RAR) activation is essential for their expression, whereas retinoid X receptor (RXR) activation is not essential for α4β7 expression. However, it remains unclear whether RXR activation affects the RA-dependent CCR9 expression on T cells and their gut homing. The major physiological RA, all-trans-RA, binds to RAR but not to RXR at physiological concentrations. Cell-surface CCR9 expression was often induced on a limited population of murine naive CD4(+) T cells by all-trans-RA or the RAR agonist Am80 alone upon CD3/CD28-mediated activation in vitro, but it was markedly enhanced by adding the RXR agonist PA024 or the RXR-binding environmental chemicals tributyltin and triphenyltin. Accordingly, CD4(+) T cells treated with the combination of all-trans-RA and tributyltin migrated into the small intestine upon adoptive transfer much more efficiently than did those treated with all-trans-RA alone. Furthermore, naive TCR transgenic CD4(+) T cells transferred into wild-type recipients migrated into the small intestinal lamina propria following i.p. injection of Ag, and the migration was enhanced by i.p. injection of PA024. We also show that PA024 markedly enhanced the all-trans-RA-induced CCR9 expression on naturally occurring naive-like regulatory T cells upon activation, resulting in the expression of high levels of α4β7, CCR9, and Foxp3. These results suggest that RXR activation enhances the RAR-dependent expression of CCR9 on T cells and their homing capacity to the small intestine.  相似文献   

9.
CCL21 (SLC/6Ckine) is constitutively expressed by secondary lymphoid tissue and attracts CCR7-expressing mature dendritic cells and naive T cells. Recent studies demonstrated that intra-tumoral delivery of CCL21 induces tumor regression in a T cell dependent manner. CCL21 is known to mediate T cell trafficking but little is known about its function as a costimulatory molecule. Herein, we demonstrate that CCL21 costimulates expansion of CD4+ and CD8+ T cells and induces Th1 polarization. These effects were specific for naive T cells, and we show that CD4+CD25+ regulatory T cells were hyporesponsive to CCL21 induced migration, and unresponsive to CCL21 costimulation. These unique functions of CCL21 to both attract naive T cells as well as costimulate their proliferation and differentiation, suggests that CCL21 is a pivotal molecule for priming T cell responses and has therapeutic implications for local delivery of CCL21. The coordinated effects of CCL21 on T cell migration and activation may also represent a more comprehensive paradigm for the activity of other chemokines as well.  相似文献   

10.
Dendritic cells (DCs) capture and process Ag in the periphery. Thus, traffic through lymphatic vessels is mandatory before DCs relocate to lymph nodes where they are dedicated to T-cell priming. Here, we show that the ubiquitous self-marker CD47 selectively regulates DC, but not T and B cell trafficking across lymphatic vessels and endothelial barriers in vivo. We find an altered skin DC migration and impaired T-cell priming in CD47-deficient mice at steady state and under inflammatory conditions. Competitive DC migration assays and active immunization with myeloid DCs demonstrate that CD47 expression is required on DCs but not on the endothelium for efficient DC trafficking and T-cell responses. This migratory defect correlates with the quasi-disappearance of splenic marginal zone DCs in nonmanipulated CD47-deficient mice. Nonetheless, CCR7 expression and CCL19-driven chemotaxis remain intact. Our data reveal that CD47 on DCs is a critical factor in controlling migration and efficient initiation of the immune response.  相似文献   

11.
Dong S  Corre B  Nika K  Pellegrini S  Michel F 《PloS one》2010,5(11):e15114

Background

One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive.

Methodology/Principal Findings

We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement.

Conclusions/Significance

Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.  相似文献   

12.
In naive T cells, engagement of the TCR with agonist peptide:MHC molecules leads to phosphorylation of key intracellular signaling intermediates within seconds and this peaks within minutes. However, the cell does not commit to proliferation and IL-2 cytokine production unless receptor contact is sustained for several hours. The biochemical basis for this transition to full activation may underlie how T cells receive survival signals while maintaining tolerance, and is currently not well understood. We show here that for CD8 T cells commitment to proliferation and cytokine production requires sustained activation of the Src family kinase Lck and is opposed by the action of Fyn. Thus, in the absence of Fyn, commitment to activation occurs more rapidly, the cells produce more IL-2, and undergo more rounds of division. Our data demonstrate a role for Fyn in modulating the response to Ag in primary T cells.  相似文献   

13.
L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.  相似文献   

14.
This study addresses the role of the tyrosine kinase ZAP-70 in CD2-mediated T cell activation. Patients lacking ZAP-70 have few mature CD8+ T cells and high numbers of CD4+ T cells that are nonfunctional upon TCR triggering. Such a patient with a homozygous deletion in the zap-70 gene that resulted in the complete absence of ZAP-70 protein expression has been identified. Expression of the tyrosine kinases Lck, Fyn, and Syk was normal. The patient's T cells were activated with two different pairs of mitogenic mAbs. CD2-induced phosphorylation of the zeta-chain and influx of Ca2+ was defective in the ZAP-70-deficient T cells, whereas CD2-induced phosphorylation of several other proteins, including Syk, was not affected. CD2-induced proliferation as well as production of TNF-alpha and IFN-gamma was abrogated in ZAP-70-deficient T cells, whereas PMA plus ionomycin induced normal activation of these cells. Together, this study shows that CD2-activation triggers ZAP-70-dependent and -independent pathways. Deletion of ZAP-70 affected CD2- and CD3-mediated proliferation and cytokine production in a similar way, suggesting that one of the different CD2 pathways converges with a CD3 pathway at or upstream of the activation of ZAP-70.  相似文献   

15.
Chemokines and their receptors fulfill specialized roles in inflammation and under homeostatic conditions. CCR7 and its ligands, CCL19 and CCL21, are involved in lymphocyte recirculation through secondary lymphoid organs and additionally navigate lymphocytes into distinct tissue compartments. The role of CCR7 in the migration of polarized T effector/memory cell subsets in vivo is still poorly understood. We therefore analyzed murine and human CD4(+) cytokine-producing cells developed in vivo for their chemotactic reactivity to CCR7 ligands. The responses of cells producing cytokines, such as IFN-gamma, IL-4, and IL-10, as well as of subsets defined by memory or activation markers were comparable to that of naive CD4(+) cells, with slightly lower reactivity in cells expressing IL-10 or CD69. This indicates that CCR7 ligands are able to attract naive as well as the vast majority of activated and effector/memory T cell stages. Chemotactic reactivity of these cells toward CCL21 was absent in CCR7-deficient cells, proving that effector cells do not use alternative receptors for this chemokine. Th1 cells generated from CCR7(-/-) mice failed to enter lymph nodes and Peyer's patches, but did enter a site of inflammation. These findings indicate that CD4(+) cells producing effector cytokines upon stimulation retain the capacity to recirculate through lymphoid tissues via CCR7.  相似文献   

16.
17.
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.  相似文献   

18.
Naive T cells are usually excluded from nonlymphoid tissues. Only when such tertiary tissues are subjected to chronic inflammation, such as in some (but not all) autoimmune diseases, are naive T cells recruited to these sites. We show that the CCR7 ligand CC chemokine ligand (CCL)21 is sufficient for attracting naive T cells into tertiary organs. We performed intravital microscopy of cremaster muscle venules in T-GFP mice, in which naive T cells express green fluorescent protein (GFP). GFP(+) cells underwent selectin-dependent rolling, but no firm adherence (sticking). Superfusion with CCL21, but not CXC chemokine ligand 12, induced integrin-dependent sticking of GFP(+) cells. Moreover, CCL21 rapidly elicited accumulation of naive T cells into sterile s.c. air pouches. Interestingly, a second CCR7 ligand, CCL19, triggered T cell sticking in cremaster muscle venules, but failed to induce extravasation in air pouches. Immunohistochemistry studies implicate ectopic expression of CCL21 as a mechanism for naive T cell traffic in human autoimmune diseases. Most blood vessels in tissue samples from patients with rheumatoid arthritis (85 +/- 10%) and ulcerative colitis (66 +/- 1%) expressed CCL21, and many perivascular CD45RA(+) naive T cells were found in these tissues, but not in psoriasis, where CCL21(+) vessels were rare (17 +/- 1%). These results identify endothelial CCL21 expression as an important determinant for naive T cell migration to tertiary tissues, and suggest the CCL21/CCR7 pathway as a therapeutic target in diseases that are associated with naive T cell recruitment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号