首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

2.
3.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

4.
Prader-Willi syndrome (PWS) is a complex neurobehavioral disorder that results from loss of function of 10 clustered, paternally expressed genes in a 1.5-Mb region of chromosome 15q11-q13. Many of the primary PWS region genes appear to have nuclear RNA regulatory functions, suggesting that multiple genetic pathways could be secondarily affected in PWS. Using a transgenic mouse model of PWS (TgPWS) with an approximately 4-Mb chromosome 7C deletion of paternal origin that models the neonatal phenotype of the human syndrome we compared by oligonucleotide microarrays expression levels of approximately 12,000 genes and ESTs in TgPWS and wild-type brain. Hybridization data were processed with two distinct statistical algorithms and revealed a dramatically reduced expression of 4 imprinted genes within the deletion region in TgPWS mice, with 2 nonimprinted, codeleted genes reduced twofold. However, only 3 genes outside the deletion were significantly altered in TgPWS mouse brain, with approximately 1.5-fold up-regulation of mRNA levels. Remarkably, these genes map to a single chromosome domain (18B3), and by quantitative RT-PCR we show that 8 genes in this domain are up-regulated in TgPWS brain. These 18B3 genes were up-regulated in an equivalent manner in Angelman syndrome mouse (TgAS) brain, which has the same deletion but of maternal origin. Therefore, the trans-regulation of the chromosome 18B3 domain is due to decreased expression of a nonimprinted gene within the TgPWS/AS mouse deletion in mouse chromosome 7C. Most surprisingly, since 48-60% of the genome was screened, it appears that the imprinted mouse PWS loci do not widely regulate mRNA levels of other genes and may regulate RNA structure.  相似文献   

5.
6.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurodevelopmental disorders caused by loss of expression of imprinted genes from the 15q11-q13 region. They arise from similar defects in the region but differ in parent of origin. There are two recognized typical 15q11-q13 deletions depending on size and several diagnostic assays are available but each has limitations. We evaluated the usefulness of a methylation-specific multiplex ligation-dependent probe amplification (MLPA) kit consisting of 43 probes to detect copy number changes and methylation status in the region. We used the MLPA kit to genotype 82 subjects with chromosome 15 abnormalities (62 PWS, 10 AS and 10 individuals with other chromosome 15 abnormalities) and 13 with normal cytogenetic findings. We developed an algorithm for MLPA probe analysis which correctly identified methylation abnormalities associated with PWS and AS and accurately determined copy number in previously assigned genetic subtypes including microdeletions of the imprinting center. Furthermore, MLPA analysis identified copy number changes in those with distal 15q deletions and ring 15s. MLPA is a relatively simple, cost-effective technique found to be useful and accurate for methylation status, copy number and analysis of genetic subtype in PWS and AS, as well as other chromosome 15 abnormalities.  相似文献   

7.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the father's germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.  相似文献   

8.
To examine the chromatin basis of imprinting in chromosome 15q11-q13, we have investigated the status of histone acetylation of the SNURF-SNRPN locus, which is a key imprinted gene locus in Prader-Willi syndrome (PWS). Chromatin immunoprecipitation (ChIP) studies revealed that the unmethylated CpG island of the active, paternally derived allele of SNURF-SNRPN was associated with acetylated histones, whereas the methylated maternally derived, inactive allele was specifically hypoacetylated. The body of the SNURF-SNRPN gene was associated with acetylated histones on both alleles. Furthermore, treatment of PWS cells with the DNA methyltransferase inhibitor 5-azadeoxycytidine (5-aza-dC) induced demethylation of the SNURF-SNRPN CpG island and restoration of gene expression on the maternal allele. The reactivation was associated with increased H4 acetylation but not with H3 acetylation at the SNURF-SNRPN CpG island. These findings indicate that (1) a significant role for histone deacetylation in gene silencing is associated with imprinting in 15q11-q13 and (2) silenced genes in PWS can be reactivated by drug treatment.  相似文献   

9.
Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS.  相似文献   

10.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.  相似文献   

11.
Summary Interstitial cytogenetic deletions involving the paternally derived chromosome 15q11–13 have been described in patients with the Prader-Willi syndrome (PWS). We report a child with PWS and a de novo unbalanced karyotype –45,XY,–9,–15,+der(9)t(9;15)(q34;q13). Molecular studies with the DNA probe pML34 confirmed that only a single Prader Willi critical region (PWCR: 15q11.2-q12) copy was present. Hybridisation of patient and parental DNA with the multi-allelic probe CMW1, which maps to pter-15q13, showed that the chromosome involved in the translocation was paternal in origin. This is the first example of a paternally-derived PWCR allele loss caused by an unbalanced translocation that has arisen de novo.  相似文献   

12.
Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome.  相似文献   

13.
Paternally expressed imprinted genes (Pegs) were systematically screened by comparing gene expression profiles of parthenogenetic and normal fertilized embryos using an oligonucleotide array. A novel imprinted gene, Peg12/Frat3, was identified along with 10 previously known Pegs. Peg12/Frat3 is expressed primarily in embryonic stages and might be a positive regulator of the Wnt signaling pathway. It locates next to the Zfp127 imprinted gene in the mouse 7C region, which has syntenic homology to the human Prader-Willi syndrome region on chromosome 15q11-q13, indicating that this imprinted region extends to the telomeric side in the mouse.  相似文献   

14.
Prader-Willi (PWS) and Angelman (AS) are syndromes of developmental impairment that result from the loss of expression of imprinted genes in the paternal (PWS) or maternal (AS) 15q11-q13 chromosome. Diagnosis on a clinical basis is difficult in newborns and young infants; thus, a suitable molecular test capable of revealing chromosomal abnormalities is required. We used a variety of cytogenetic and molecular approaches, such as, chromosome G banding, fluorescent in situ hybridization, a DNA methylation test, and a set of chromosome 15 DNA polymorphisms to characterize a cohort of 27 PWS patients and 24 suspected AS patients. Molecular analysis enabled the reliable diagnosis of 14 PWS and 7 AS patients, and their classification into four groups: (A) 6 of these 14 PWS subjects (44 %) had deletions of paternal 15q11-q13; (B) 4 of the 7 AS patients had deletions of maternal 15q11-q13; (C) one PWS patient (8 %) had a maternal uniparental disomy (UPD) of chromosome 15; (D) the remaining reliably diagnoses of 7 PWS and 3 AS cases showed abnormal methylation patterns of 15q11-q13 chromosome, but none of the alterations shown by the above groups, although they may have harbored deletions undetected by the markers used. This study highlights the importance of using a combination of cytogenetic and molecular tests for a reliable diagnosis of PWS or AS, and for the identification of genetic alterations.  相似文献   

15.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

16.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are distinct genetic disorders that are caused by a deletion of chromosome region 15q11-13 or by uniparental disomy for chromosome 15. Whereas PWS results from the absence of a paternal copy of 15q11-13, the absence of a maternal copy of 15q11-13 leads to AS. We have found that an MspI/HpaII restriction site at the D15S63 locus in 15q11-13 is methylated on the maternally derived chromosome, but unmethylated on the paternally derived chromosome. Based on this difference, we have devised a rapid diagnostic test for patients suspected of having PWS and AS.  相似文献   

17.
Prader-Willi syndrome (PWS) is a multisystemic disorder caused by the loss of expression of paternally transcribed genes in the PWS critical region of chromosome 15. Various molecular mechanisms are known to lead to PWS: deletion 15q11-q13 (75% of cases), maternal uniparental disomy (matUPD15) (23%) and imprinting defects (2%). FISH and microsatellite analysis are required to establish the molecular etiology, which is essential for appropriate genetic counseling and care management. We characterized an Argentinean population, using five microsatellite markers (D15S1035, D15S11, D15S113, GABRB3, D15S211) chosen to develop an appropriate cost-effective method to establish the parental origin of chromosome 15 in nondeleted PWS patients. The range of heterozygosity for these five microsatellites was 0.59 to 0.94. The average heterozygosity obtained for joint loci was 0.81. The parental origin of chromosome 15 was established by microsatellite analysis in 19 of 21 non-deleted PWS children. We also examined the origin of the matUPD15; as expected, most of disomies were due to a maternal meiosis I error. The molecular characterization of this set of five microsatellites with high heterozygosity and polymorphism information content improves the diagnostic algorithm of Argentinean PWS children, contributing significantly to adequate genetic counseling of such families.  相似文献   

18.
19.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders resulting from deficiency of imprinted gene expression from paternal or maternal chromosome 15q11-15q13, respectively. In humans, expression of the imprinted genes is under control of a bipartite cis-acting imprinting center (IC). Families with deletions causing PWS imprinting defects localize the PWS-IC to 4.3 kb overlapping with SNRPN exon 1. Families with deletions causing AS imprinting defects localize the AS-IC to 880 bp 35 kb upstream of the PWS-IC. We report two mouse mutations resulting in defects similar to that seen in AS patients with deletion of the AS-IC. An insertion/duplication mutation 13 kb upstream of Snrpn exon 1 resulted in lack of methylation at the maternal Snrpn promoter, activation of maternally repressed genes, and decreased expression of paternally repressed genes. The acquisition of a paternal epigenotype on the maternal chromosome in the mutant mice was demonstrated by the ability to rescue the lethality and growth retardation in a mouse model of a PWS imprinting defect. A second mutation, an 80-kb deletion extending upstream of the first mutation, caused a similar imprinting defect with variable penetrance. These results suggest that there is a mouse functional equivalent to the human AS-IC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号