首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental toxicity potential of butylparaben (CAS No. 94-26-8) was evaluated in rats. Sprague-Dawley rats were administered butylparaben in 0.5% carboxymethylcellulose by oral gavage at dose levels of 0, 10, 100, or 1,000 mg/kg/day on gestation days (GD) 6-19 (sperm positive day = GD 0). Caesarean sections were performed on GD 20 and fetuses were evaluated for viability, growth, and external, visceral, and skeletal abnormalities. Each group consisted of 25 females, with at least 21 per group being pregnant. The highest dose level caused decreases in maternal weight gain during some of the measurement intervals and was statistically significant during the GD 18-20 interval. Maternal food consumption was significantly decreased in the highest dose group over the dosing period (GD 6-20). There were no differences from control in any of the developmental parameters measured, including embryo/fetal viability, fetal weight, malformations, or variations. Based on the results of this study, the maternal NOAEL for butylparaben was 100 mg/kg/day. Butylparaben does not have the potential to cause developmental toxicity in the Sprague-Dawley rat at oral dosages up to 1000 mg/kg/day.  相似文献   

2.
Developmental toxicity evaluation of berberine in rats and mice   总被引:1,自引:0,他引:1  
BACKGROUND: Berberine, a plant alkaloid, is found in some herbal teas and health-related products. It is a component of goldenseal, an herbal supplement. Berberine chloride dihydrate (BCD) was evaluated for developmental toxicity in rats and mice. METHODS: Berberine chloride dihydrate was administered in the feed to timed-mated Sprague-Dawley (CD) rats (0, 3,625, 7,250, or 14,500 ppm; on gestational days [GD] 6-20), and Swiss Albino (CD-1) mice (0, 3,500, 5,250, or 7,000 ppm; on GD 6-17). Ingested doses were 0, 282, 531, and 1,313 mg/kg/day (rats) and 0, 569, 841, and 1,155 mg/kg/day (mice). RESULTS: There were no maternal deaths. The rat maternal lowest observed adverse effect level (LOAEL), based on reduced maternal weight gain, was 7,250 ppm. The rat developmental toxicity LOAEL, based on reduced fetal body weight per litter, was 14,500 ppm. In the mouse study, equivocal maternal and developmental toxicity LOAELs were 5,250 ppm. Due to scattering of feed in the high dose groups, a gavage study at 1,000 mg/kg/day was conducted in both species. CONCLUSIONS: In rats, maternal, but not fetal adverse effects were noted. The maternal toxicity LOAEL remained at 7,250 ppm (531 mg/kg/day) based on the feed study and the developmental toxicity NOAEL was raised to 1,000 mg/kg/day BCD based on the gavage study. In the mouse, 33% of the treated females died. Surviving animals had increased relative water intake, and average fetal body weight per litter decreased 5-6% with no change in live litter size. The maternal toxicity LOAEL remained at 5,250 ppm (841 mg/kg/day) BCD, based on increased water consumption. The developmental toxicity LOAEL was raised to 1,000 mg/kg/day BCD based on decreased fetal body weight.  相似文献   

3.
BACKGROUND: Emodin, a widely available herbal remedy, was evaluated for potential effects on pregnancy outcome. METHODS: Emodin was administered in feed to timed-mated Sprague-Dawley (CD) rats (0, 425, 850, and 1700 ppm; gestational day [GD] 6-20), and Swiss Albino (CD-1) mice (0, 600, 2500 or 6000 ppm; GD 6-17). Ingested dose was 0, 31, 57, and approximately 80-144 mg emodin/kg/day (rats) and 0, 94, 391, and 1005 mg emodin/kg/day (mice). Timed-mated animals (23-25/group) were monitored for body weight, feed/water consumption, and clinical signs. At termination (rats: GD 20; mice: GD 17), confirmed pregnant dams (21-25/group) were evaluated for clinical signs: body, liver, kidney, and gravid uterine weights, uterine contents, and number of corpora lutea. Fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations/variations. RESULTS: There were no maternal deaths. In rats, maternal body weight, weight gain during treatment, and corrected weight gain exhibited a decreasing trend. Maternal body weight gain during treatment was significantly reduced at the high dose. In mice, maternal body weight and weight gain was decreased at the high dose. CONCLUSIONS: Prenatal mortality, live litter size, fetal sex ratio, and morphological development were unaffected in both rats and mice. At the high dose, rat average fetal body weight per litter was unaffected, but was significantly reduced in mice. The rat maternal lowest observed adverse effect level (LOAEL) was 1700 ppm; the no observed adverse effect level (NOAEL) was 850 ppm. The rat developmental toxicity NOAEL was > or =1700 ppm. A LOAEL was not established. In mice, the maternal toxicity LOAEL was 6000 ppm and the NOAEL was 2500 ppm. The developmental toxicity LOAEL was 6000 ppm (reduced fetal body weight) and the NOAEL was 2500 ppm.  相似文献   

4.
The developmental toxicity potential of trimethylolpropane caprylate caproate (TMPCC, CAS no. 11138-60-6) was evaluated in rats. Sprague-Dawley rats were administered TMPCC in a corn oil suspension dermally at dose levels of 0, 200, 600, or 2,000 mg/kg/day on gestation days (GD) 6-15 (sperm positive day=GD 0). Caesarean sections were performed on GD 20 and fetuses were evaluated for viability, growth, and external, visceral, and skeletal abnormalities. Each group consisted of 25 females, with at least 22 per group being pregnant. The two highest dose levels caused some local irritation at the site of application, but no decreases in maternal weight gain. There were no differences from control in any of the developmental parameters measured, including embryo/fetal viability, fetal weight, malformations, or variations. TMPCC did not cause any developmental toxicity in the Sprague-Dawley rat at dermal dosages up to 2,000 mg/kg/day.  相似文献   

5.
To identify possible effects of horizontally polarized magnetic field (MF) exposure on maintenance of pregnancy and embryo-fetal development, an MF exposure system was designed and constructed and 96 time-mated female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz MF at field strengths of 0 (sham control) and 5, 83.3, or 500 microT (50, 833, or 5000 mG). Dams received MF or sham exposures for 22 h/day on gestational day 6-20. MF was monitored continuously throughout the study. There were no evidences of maternal toxicity or developmental toxicity in any MF exposed groups. Mean maternal body weight, organ weights, and hematological and serum biochemical parameters in groups exposed to MF did not differ from those in sham control. No exposure related differences in fetal deaths, fetal body weight, and placental weight were observed between MF exposed groups and sham control. External, visceral, and skeletal examination of fetuses demonstrated no significant differences in the incidence of fetal malformations between MF exposed and sham control groups. In conclusion, exposure of pregnant rats to 60 Hz at MF strengths up to 500 microT during gestation day 6-20 did not produce any biologically significant effect in either dams or fetuses.  相似文献   

6.
BACKGROUND: Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair‐care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy METHODS: Timed‐mated Sprague–Dawley rats (25/group) and New Zealand White (NZW) rabbits (24/group) were exposed to sodium thioglycolate in vehicle (95% ethanol:distilled water, 1:1) by unoccluded topical application on gestational days (GD) 6–19 (rats) or 6–29 (rabbits) for 6 hr/day, at 0, 50, 100, or 200 mg/kg body weight/day (rats) and 0, 10, 15, 25, or 65 mg/kg/day (rabbits). At termination (GD 20 rats; GD 30 rabbits), fetuses were examined for external, visceral, and skeletal malformations and variations. RESULTS: In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on GD 6–19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment‐related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Fetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/fetal toxicity and no treatment‐related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6–29 resulted in maternal dose‐related toxicity at the dosing site in all groups; no maternal systemic toxicity, embryo/fetal toxicity, or treatment‐related teratogenicity were observed in any group. CONCLUSIONS: A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and ≥65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of theses study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users. Birth Defects Research Part B 68:144–161, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

7.
BACKGROUND: Ephedra was commonly used in herbal products marketed for weight loss until safety concerns forced its removal from products. Even before the ban, manufacturers had begun to replace ephedra with other compounds, including Citrus aurantium, or bitter orange. The major component in the bitter orange extract is synephrine which is chemically similar to ephedrine. The purpose of this study was to determine if relatively pure synephrine or synephrine present as a constituent of a bitter orange extract produced developmental toxicity in rats. METHOD: Sprague‐Dawley rats were dosed daily by gavage with one of several different doses of synephrine from one of two different extracts. Caffeine was added to some doses. Animals were sacrificed on GD 21, and fetuses were examined for the presence of various developmental toxic endpoints. RESULTS AND CONCLUSION: At doses up to 100 mg synephrine/kg body weight, there were no adverse effects on embryolethality, fetal weight, or incidences of gross, visceral, or skeletal abnormalities. There was a decrease in maternal weight at 50 mg synephrine/kg body weight when given as the 6% synephrine extract with 25 mg caffeine/kg body weight; there was also a decrease in maternal weight in the caffeine only group. This decrease in body weight may have been due to decreased food consumption which was also observed in these two groups. Overall, doses of up to 100 mg synephrine/kg body weight did not produce developmental toxicity in Sprague‐Dawley rats. Birth Defects Res (Part B) 92:216–223, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Sodium orthovanadate in deionized water was administered once daily by gavage on gestational days 6-15 to mice at doses of 0, 7.5, 15, 30, and 60 mg/kg. Dams were killed on day 18 of pregnancy, and fetuses were examined for external, visceral, and skeletal defects. Maternal toxicity was observed at the highest doses of sodium orthovanadate, as evidenced by a significant number of deaths (60 and 30 mg/kg/d) and reduced weight gain and food consumption (30 and 15 mg/kg/d). Embryolethality and teratogenicity were not observed at maternally toxic doses and below, but fetal toxicity was evidenced by a significant delay in the ossification process of some skeletal districts at 30 mg/kg/d. The no-observed-adverse-effect level (NOAEL) for maternal toxicity was 7.5 mg/kg/d, and 15 mg/kg/d represented a NOAEL for developmental toxicity in mice under the conditions of this study.  相似文献   

9.
Soman (GD; phosphonofluoridic acid, methyl-,1,2,2-trimethylpropyl ester) is an organophosphate compound with potent anticholinesterase activity. To determine developmental toxicity, soman was administered orally to CD rats on days 6 through 15 of gestation at dose levels of 0, 37.5, 75, 150, or 165 micrograms/kg/day and to New Zealand White (NZW) rabbits on days 6 through 19 of gestation at dose levels of 0, 2.5, 5, 10, or 15 micrograms/kg/day. At sacrifice, gravid uteri were weighed and examined for number and status of implants. Individual fetal body weights and external, visceral, and skeletal malformations were recorded. Mean maternal weight changes, fetal implantation status/litter, fetal weight, and fetal malformations/litter were compared between dose groups. Monitors for maternal toxicity were net body weight change, treatment weight change, mortality, and clinical signs of toxicity such as lethargy, ataxia, and tremors. Maternal rats and rabbits in the high-dose groups exhibited statistically significant increases in toxicity and mortality when compared to controls. There were no significant dose-related effects among dose groups in the prevalence of postimplantation loss, malformations, or in average body weight of live fetuses per litter. There was no evidence of increased prenatal mortality or fetal toxicity in the CD rat or NZW rabbit following exposure to soman, even at a dose that produced significant maternal toxicity.  相似文献   

10.
BACKGROUND: Indinavir is an antiviral agent used for the treatment of HIV infection. We studied its developmental toxicity in rats. METHODS: Pregnant animals were treated orally with 500 mg indinavir/kg body weight (bw) from day 6 to 15 of gestation (once daily) or from day 9 to 11 (twice daily). Fetuses were evaluated for external and skeletal anomalies on day 21 of gestation. In addition, 19 rats were treated from day 9 of gestation to day 24 postnatally with 500 mg indinavir/kg bw once daily; a control group of 17 rats was treated with the vehicle accordingly. Developmental landmarks were recorded. Sixteen offspring each were studied on postnatal days 7, 14, 21, and 35 for hepatic enzyme activity. Liver tissue was examined by electron microscopy. RESULTS: Fetal examination on day 21 of pregnancy showed no treatment-related effects on number, weight, and viability of the fetuses; however, an increased incidence was noted in the supernumerary ribs and variations of the vertebral ossification centers in both indinavir-treated groups. Postnatal evaluation showed delayed fur development, eye opening, and descensus testis. The most striking finding was unilateral anophthalmia, observed in 7 pups (3%) from 2 out of 19 litters exposed to indinavir, but not in controls. Only minor changes in hepatic monooxygenase activities occurred in dams. Electron microscopy of liver samples showed hepatocellular inclusions of lipids and myelin figure-like structures in maternal livers and infiltration with granulocytes in offspring livers. CONCLUSIONS: Further studies on reproductive toxicity, including combinations of three or more antiretroviral agents as used therapeutically, are needed to determine the hazards of such a treatment.  相似文献   

11.
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day.  相似文献   

12.
Timed-pregnant Upj:TUC(SD)spf (Sprague-Dawley) rats were orally (gastric intubation) dosed with bropirimine (an immunomodulator and inducer of interferon with antiviral and antitumor activities against experimental models) at 100, 200 or 400 mg/kg/day (first experiment), or at 25, 50, or 100 mg/kg/day (second experiment), on days 7-15 of gestation. In the first experiment, maternal toxicity occurred in all bropirimine-treated groups as evidenced primarily by significant decreases in weight gain, as compared to the vehicle control group. Embryotoxicity also occurred as evidenced by a dose-related increase in the number of dams with early implantation sites only. This pronounced effect on early embryonic development led to an insufficient number of offspring to access the developmental toxicity of bropirimine. This effect and the fact that all three doses were toxic to the dams dictated that a second experiment be carried out at lower doses. Significant effects on maternal weight gain also were observed in the second experiment, at least in the first 4 days of dosing, although only one dam in the 100 mg/kg/day group had early implantation sites only, in contrast to 11 such dams at this dosage in the first experiment. However, the fact that there were significant dose-related increases in the incidence of several variations in fetuses in this group indicated that there also was embryotoxicity at 100 mg/kg/day in the second experiment. Thus, although no biologically significant increases in the incidence of any malformation or major variation were found in this study, the results did indicate that bropirimine was embryotoxic at dosages which also produced significant maternal toxicity.  相似文献   

13.
The potential for trichloroethylene (TCE) and perchloroethylene (PERC) to induce developmental toxicity was investigated in Crl:CD (SD) rats whole-body exposed to target concentrations of 0, 50, 150 or 600 ppm TCE or 0, 75, 250 or 600 ppm PERC for six hours/day, seven days/week on gestation day (GD) 6-20 and 6-19, respectively. Actual chamber concentrations were essentially identical to target with the exception of the low PERC exposure level, which was 65 ppm. The highest exposure levels exceeded the limit concentration (2 mg/L) specified in the applicable test guidelines. Maternal necropsies were performed the day following the last exposure. Dams exposed to 600 ppm TCE exhibited maternal toxicity, as evidenced by decreased body weight gain (22% less than control) during GD 6-9. There were no maternal effects at 50 or 150 ppm TCE and no indications of developmental toxicity (including heart defects or other terata) at any exposure level tested. Therefore, the TCE NOEC for maternal toxicity was 150 ppm, whereas the embryo/fetal NOEC was 600 ppm. Maternal responses to PERC were limited to slight, but statistically significant reductions in body weight gain and feed consumption during the first 3 days of exposure to 600 ppm, resulting in a maternal NOEC of 250 ppm. Developmental effects at 600 ppm consisted of reduced gravid uterus, placental and fetal body weights, and decreased ossification of thoracic vertebral centra. Developmental effects at 250 ppm were of minimal toxicological significance, being limited to minor decreases in fetal and placental weight. There were no developmental effects at 65 ppm.  相似文献   

14.
The combination of artemether plus lumefantrine is a type of artemisinin‐based combination therapy (ACT) recommended by the World Health Organization for uncomplicated falciparum malaria except in the first trimester of pregnancy. The first trimester restriction was based on the marked embryotoxicity in animals (including embryo death and cardiac and skeletal malformations) of artemisinins such as artesunate, dihydroartemisinin, and artemether. Before recommending ACTs for use in the first trimester, the World Health Organization has requested that all information relevant to the assessment of risk of ACTs to the embryo be made available to the public. This report describes the results of embryo‐fetal development studies of artemether alone, lumefantrine alone, and the combination in rats and rabbits as well as toxicokinetic studies of lumefantrine in pregnant rabbits. The developmental no‐effect levels for lumefantrine were 300 mg/kg/day in rats (based on a 25% decrease in litter size at 1000 mg/kg/day) and 1000 mg/kg/day in rabbits. The calculated safety margins based on human equivalent dose and plasma Cmax and AUC values were in the range of 2.5‐ to 17‐fold. The developmental no‐effect levels for artemether were 3 mg/kg/day in rats and 25 mg/kg/day in rabbits. Lumefantrine caused no teratogenicity and was not a potent embryotoxin in rats and rabbits. Expected artemisinin‐like findings were seen with artemether alone and with artemether/lumefantrine combined except that no malformations were observed. There were no findings in pregnant rats and rabbits that would cause increased concern for the use of artemether–lumefantrine in the first trimester compared to other ACTs.  相似文献   

15.
Malathion is a well known pesticide and is commonly used in many agricultural and non-agricultural settings. Its toxicity has been attributed primarily to the accumulation of acetylcholine (Ach) at nerve junctions, due to the inhibition of acetylcholinesterase (AChE), and consequently overstimulation of the nicotinic and muscarinic receptors. However, the genotoxicity of malathion has not been adequately studied; published studies suggest a weak interaction with the genetic material. In the present study, we investigated the genotoxic potential of malathion in bone marrow cells and peripheral blood obtained from Sprague-Dawley rats using chromosomal aberrations (CAs), mitotic index (MI), and DNA damage as toxicological endpoints. Four groups of four male rats, each weighing approximately 60 ± 2g, were injected intraperitoneally (i.p.) once a day for five days with doses of 2.5, 5, 10, and 20mg/kg body weight (BW) of malathion dissolved in 1% DMSO. The control group was made up of four animals injected with 1% DMSO. All the animals were sacrificed 24h after the fifth day treatment. Chromosome preparations were obtained from bone marrow cells following standard protocols. DNA damage in peripheral blood leukocytes was determined using alkaline single-cell gel electrophoresis (comet assay). Malathion exposure significantly increased the number of structural chromosomal aberrations (CAs) and the percentages of DNA damage, and decreased the mitotic index (MI) in treated groups when compared with the control group. Our results demonstrate that malathion has a clastogenic/genotoxic potential as measured by the bone marrow CA and comet assay in Sprague-Dawley rats.  相似文献   

16.
The developmental toxicity of the potent adenosine deaminase (ADA) inhibitor, pentostatin (2'-deoxycoformycin), was investigated in pregnant rats and rabbits administered daily iv doses during organogenesis. Rats received 0, 0.01, 0.10, or 0.75 mg/kg on gestation days 6-15 and rabbits received 0, 0.005, 0.01, or 0.02 mg/kg on gestation days 6-18 and maternal and fetal parameters were evaluated on gestation day 21 (rats) or 30 (rabbits). Live fetuses were examined for external, visceral, and skeletal malformations and variations. In rats, maternal body weight gain and food consumption were significantly suppressed at doses of 0.10 and 0.75 mg/kg during the treatment period but returned to control levels during posttreatment. Increased postimplantation loss and decreased numbers of live fetuses, litter size, and fetal body weight were observed at 0.75 mg/kg. A statistically significant increase in the incidence of vertebral malformations occurred at 0.75 mg/kg. The incidence of certain skeletal variations (extra presacral vertebrae, extra ribs, hypoplastic vertebrae) was also increased at 0.75 mg/kg. Ossification of cervical centra was reduced at 0.75 mg/kg compared with controls. In rabbits, marked maternal toxicity (death, body weight loss, and decreased food consumption) and reproductive toxicity (abortion and premature delivery) occurred in all pentostatin-treated groups. However, there were no significant effects on number of live fetuses, pre- or postimplantation loss, litter size, or fetal body weights in the animals with live litters. There was also no apparent increase in the incidence of malformations or variations in the live fetuses of pentostatin-treated rabbits. Thus, these studies demonstrate developmental toxicity of pentostatin in rats and rabbits, and teratogenicity in rats, at maternally toxic doses.  相似文献   

17.
Acute exposure to arsenic trioxide has been reported to induce death and/or multiple organ damage with symptoms including nausea, vomiting, diarrhea, gastrointestinal hemorrhage, cerebral edema, tachycardia, dysrhythmias and hypovolemic shock. Its toxic effects are due to its ability to bind to sulfhydryl groups of proteins and to inhibit energy production. Although the chronic exposure to arsenic trioxide has been linked to various types of cancer, such as skin, liver, lung, bladder and kidney neoplasms, studies of its carcinogenic potential in animals have not been conclusive. In this study, we investigated the genotoxic potential of arsenic trioxide in bone-marrow cells obtained from Sprague-Dawley rats; using chromosomal aberrations (CA), mitotic index (MI) and micronuclei (MN) formation as the toxicological endpoints. Four groups of six male rats each, weighing approximately 60+/-2 g per rat, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15 and 20 mg/kg body weight (BW) of arsenic trioxide dissolved in distilled water. A control group was also made of six animals injected with distilled water without chemical. All the animals were sacrificed at the end of the treatment period. Chromosome and micronuclei preparation was obtained from bone-marrow cells following standard protocols. Arsenic trioxide exposure significantly increased the number of structural chromosomal aberrations, the frequency of micronucleated cells and decreased the mitotic index in treated groups when compared with the control group. Our results demonstrate that arsenic trioxide has a clastogenic/genotoxic potential as measured by the bone-marrow CA and MN tests in Sprague-Dawley rats.  相似文献   

18.
BACKGROUND: Previous investigations reported no teratogenicity for methylphenidate (MPH). These studies investigated potential teratogenicity of d‐MPH and d,l‐MPH as commitments to the FDA. METHODS: Rabbits received 15, 50, 150 mg/kg/day (mkd) d‐MPH or 20, 60, 200, 300 mkd d,l‐MPH on gestation days 7–20. Rats received 2.5, 10, 40 mkd d‐MPH, or 7, 25, 75, 80 mkd d,l‐MPH on gestation days 6–17. RESULTS: d‐MPH—In rabbits, mortality occurred at 150 mkd. Dilated pupils, increased activity, biting/chewing, respiration, and salivation occurred at ≥15 mkd in rabbits and ≥10 mkd in rats. Decreased food consumption occurred at 40 mkd in rats. Decreased body weight parameters occurred at 150 mkd in rabbits and ≥10 mkd in rats. There were no fetal findings in rabbits. In rats, skeletal variations occurred at 40 mkd. d,l‐MPH—In rabbits, mortality occurred at ≥200 mkd. Dilated pupils, increased activity, biting/chewing, respiration, and salivation occurred at ≥20 mkd in rabbits and ≥25 mkd in rats. Decreased food consumption occurred at ≥200 mkd in rabbits and ≥25 mkd in rats. Decreased body weight parameters occurred at ≥200 mkd in rabbits and ≥25 mkd in rats. In rabbits, two fetuses (separate litters) had spina bifida and malrotated hindlimbs at 200 mkd. In rats, skeletal variations occurred at ≥75 mkd. CONCLUSIONS: There was no teratogenicity with d‐MPH. There was a low teratogenic risk with d,l‐MPH in only the rabbit. Higher Cmax may explain differences in results from previous studies. Birth Defects Res (Part B) 83:489‐501, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies.  相似文献   

20.
BACKGROUND: Ibuprofen and tolmetin are popular non-steroidal anti-inflammatory drugs. Previous animal studies taken with single daily doses showed their good prenatal tolerability. However, since both cyclooxygenase (COX) inhibitors have a short half-life, the current report presents drug developmental effects after triple daily doses administration, as they are used in human. METHODS: Drugs were separately, orally dosed to pregnant rats triple daily 8 hr apart from day 8 to 21 (GD=1-plug day). The total daily doses were set at 25.5, 255.0, and 600.0 mg/kg for ibuprofen and 25.5, 255.0, and 2550.0 mg/kg for tolmetin. Fetuses were delivered on GD 21 and routinely examined. Comprehensive clinical and developmental measurements were done. RESULTS: Maternal toxicity and intrauterine growth retardation were found in groups exposed to the highest doses of both drugs. An increase of external variations was reported in groups exposed to the middle and highest dose of ibuprofen and to the highest dose of tolmetin. Skeletal variations were significantly different only in litters treated with the highest doses of the drugs. Pooled statistical analysis showed a higher incidence of midline and ventricular septal (VSD) defect in rat fetuses exposed to COX inhibitors when compared with historical control data. For ibuprofen, the influence on VSD was similar to aspirin. CONCLUSION: Both COX inhibitors were toxic to dams in the highest doses evaluated, which caused a significantly greater incidence of intrauterine growth retardation and developmental variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号