首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.  相似文献   

2.
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.  相似文献   

3.
Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian clock.  相似文献   

4.
For spatial orientation and navigation, many insects derive compass information from the polarization pattern of the blue sky. The desert locust Schistocerca gregaria detects polarized light with a specialized dorsal rim area of its compound eye. In the locust brain, polarized-light signals are passed through the anterior optic tract and tubercle to the central complex which most likely serves as an internal sky compass. Here, we suggest that neurons of a second visual pathway, via the accessory medulla and posterior optic tubercle, also provide polarization information to the central complex. Intracellular recordings show that two types of neuron in this posterior pathway are sensitive to polarized light. One cell type connects the dorsal rim area of the medulla with the medulla and accessory medulla, and a second type connects the bilaterally paired posterior optic tubercles. Given the evidence for a role of the accessory medulla as the master clock controlling circadian changes in behavioral activity in flies and cockroaches, our data open the possibility that time-compensated polarized-light signals may reach the central complex via this pathway for time-compensated sky-compass navigation.  相似文献   

5.
The polarization pattern of the blue sky serves as an important reference for spatial orientation in insects. To understand the neural mechanisms involved in sky compass orientation we have analyzed the polarization vision system in the locust Schistocerca gregaria. As in other insects, photoreceptors adapted for the detection of sky polarization are concentrated in a dorsal rim area (DRA) of the compound eye. Stationary flying locusts show polarotactic yaw-torque responses when illuminated through a rotating polarizer from above. This response is abolished after painting the DRAs. Central stages of the polarization vision system, revealed through tracing studies, include dorsal areas in the lamina and medulla, the anterior lobe of the lobula, the anterior optic tubercle, the lateral accessory lobe and the central complex. Physiological analysis of polarization-sensitive (POL) neurons has focussed on the optic tubercle and on the central complex. Each POL neuron was maximally excited at a certain e-vector (phimax) and was maximally inhibited at an e-vector perpendicular to phimax. The neurons had large visual fields, and many neurons received input from both eyes. The neuronal organization of the central complex suggests a role as a spatial compass within the locust brain.  相似文献   

6.
Mass migration of desert locusts is a common phenomenon in North Africa and the Middle East but how these insects navigate is still poorly understood. Laboratory studies suggest that locusts are able to exploit the sky polarization pattern as a navigational cue. Like other insects locusts detect polarized light through a specialized dorsal rim area (DRA) of the eye. Polarization signals are transmitted through the optic lobe to the anterior optic tubercle (AOTu) and, finally, to the central complex in the brain. Whereas neurons of the AOTu integrate sky polarization and chromatic cues in a daytime dependent manner, the central complex holds a topographic representation of azimuthal directions suggesting a role as an internal sky compass. To understand further the integration of sky compass cues we studied polarization-sensitive (POL) neurons in the medulla that may be intercalated between DRA photoreceptors and AOTu neurons. Five types of POL-neuron were characterized and four of these in multiple recordings. All neurons had wide arborizations in medulla layer 4 and most, additionally, in the dorsal rim area of the medulla and in the accessory medulla, the presumed circadian clock. The neurons showed type-specific orientational tuning to zenithal polarized light and azimuth tuning to unpolarized green and UV light spots. In contrast to neurons of the AOTu, we found no evidence for color opponency and daytime dependent adjustment of sky compass signals. Therefore, medulla layer 4 is a distinct stage in the integration of sky compass signals that precedes the time-compensated integration of celestial cues in the AOTu.  相似文献   

7.
Many insects can detect the polarization pattern of the blue sky and rely on polarization vision for sky compass orientation. In laboratory experiments, tethered flying locusts perform periodic changes in flight behavior under a slowly rotating polarizer even if one eye is painted black. Anatomical tracing studies and intracellular recordings have suggested that the polarization vision pathway in the locust brain involves the anterior optic tract and tubercle, the lateral accessory lobe, and the central complex of the brain. To investigate whether visual pathways through the anterior optic tract mediate polarotaxis in the desert locust, we transected the tract on one side and tested polarotaxis (1) with both eyes unoccluded and (2) with the eye of the intact hemisphere painted black. In the second group of animals, but not in the first group, polarotaxis was abolished. Sham operations did not impair polarotaxis. The experiments show that the anterior optic tract is an indispensable part of visual pathways mediating polarotaxis in the desert locust.  相似文献   

8.
Cataglyphis desert ants undergo an age‐related polyethism from interior workers to relatively short‐lived foragers with remarkable visual navigation capabilities, predominantly achieved by path integration using a polarized skylight‐based sun compass and a stride‐integrating odometer. Behavioral and physiological experiments revealed that the polarization (POL) pattern is processed via specialized UV‐photoreceptors in the dorsal rim area of the compound eye and POL sensitive optic lobe neurons. Further information about the neuronal substrate for processing of POL information in the ant brain has remained elusive. This work focuses on the lateral complex (LX), known as an important relay station in the insect sky‐compass pathway. Neuroanatomical results in Cataglyphis fortis show that LX giant synapses (GS) connect large presynaptic terminals from anterior optic tubercle neurons with postsynaptic GABAergic profiles of tangential neurons innervating the ellipsoid body of the central complex. At the ultrastructural level, the cup‐shaped presynaptic structures comprise many active zones contacting numerous small postsynaptic profiles. Three‐dimensional quantification demonstrated a significantly higher number of GS (~13%) in foragers compared with interior workers. Light exposure, as opposed to age, was necessary and sufficient to trigger a similar increase in GS numbers. Furthermore, the increase in GS numbers was sensitive to the exclusion of UV light. As previous experiments have demonstrated the importance of the UV spectrum for sky‐compass navigation in Cataglyphis, we conclude that plasticity in LX GS may reflect processes involved in the initial calibration of sky‐compass neuronal circuits during orientation walks preceding active foraging. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 390–404, 2016  相似文献   

9.
Desert ant navigation: how miniature brains solve complex tasks   总被引:16,自引:0,他引:16  
This essay presents and discusses the state of the art in studies of desert ant (Cataglyphis) navigation. In dealing with behavioural performances, neural mechanisms, and ecological functions these studies ultimately aim at an evolutionary understanding of the insect's navigational toolkit: its skylight (polarization) compass, its path integrator, its view-dependent ways of recognizing places and following landmark routes, and its strategies of flexibly interlinking these modes of navigation to generate amazingly rich behavioural outputs. The general message is that Cataglyphis uses path integration as an egocentric guideline to acquire continually updated spatial information about places and routes. Hence, it relies on procedural knowledge, and largely context-dependent retrieval of such knowledge, rather than on all-embracing geocentred representations of space.This revised version was published online in July 2003 with corrections to the text of the sections "Skylight compass" and "Path integration".  相似文献   

10.
The mechanisms by which migratory birds find their way from breeding grounds to winter quarters and back have been the subject of intensive research during the past four decades. Birds are equipped with genetic information about the migratory direction, and they can use the earth's magnetic field, star patterns and the sun and/or skylight polarization patterns as compass references. Studies on a number of North American and European species have suggested possible species-specific differences in the relative role of the compass mechanisms. This may be largely the result of divergent experimental designs, which make results difficult to compare. Comparative studies with identical methods are needed to see how much species-specific variation exists in basic orientation mechanisms.  相似文献   

11.
We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365 nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.  相似文献   

12.
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky’s polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant’s compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.  相似文献   

13.
Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim--and the polarization pattern too weak--to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision.  相似文献   

14.
Juvenile bird migrants are generally believed to use a clock‐and‐compass migratory orientation strategy. According to such a strategy migrants accomplish their migration by flying a number of successive flight steps with direction and number of steps controlled by an endogenous programme. One powerful way of testing this is by comparing predictions from a model of such a strategy with observed patterns. We used data from ringing and satellite‐based radio telemetry to investigate the orientation system of juvenile ospreys (Pandion haliaetus) and honey buzzards (Pernis apivorus) migrating from Sweden to tropical west Africa. The ring recoveries showed a much larger scatter in the orientation of ospreys than of honey buzzards, but there was only a slight such difference in the satellite tracks. These tracks of individuals of both species were rather straight with a high directional concentration per step. The honey buzzard data showed a close fit to a simple vector summation model, which is expected if birds follow a clock‐and‐compass strategy. However, the osprey data did not fit such a simple model, as ring recoveries showed a significantly greater deviation at short distances than predicted on the basis of long distance data. Satellite tracking also indicated less concentrated orientation on short distances. The pattern observed for the osprey can generally be explained by an extended vector summation model, including an important element of pre‐migration dispersal. The existence of extensive dispersal in the osprey stands in contrast to the apparent absence of such dispersal in the honey buzzard. The explanation for this difference between the species is unclear. The model of orientation by vector summation is very sensitive to the existence of differences in mean direction between individuals. Assuming such differences, as tentatively indicated by the satellite tracking data, makes simple compass orientation by vector summation inconsistent with the distribution of ring recoveries at long distances, with a high proportion of misoriented birds falling outside the normal winter range.  相似文献   

15.
A colorful model of the circadian clock   总被引:2,自引:0,他引:2  
Reppert SM 《Cell》2006,124(2):233-236
The migration of the colorful monarch butterfly provides biologists with a unique model system with which to study the cellular and molecular mechanisms underlying a sophisticated circadian clock. The monarch circadian clock is involved in the induction of the migratory state and navigation over long distances, using the sun as a compass.  相似文献   

16.
《Animal behaviour》1988,36(1):150-158
Despite being the most studied of all avian orientation systems, important questions still remain about the sun compass of homing pigeons, Columba livia. White it is well-documented that the sun compass is usually learned by young pigeons during the first 10–12 weeks of life, the mechanism by which it is calibrated to adjust for seasonal changes in the sun's azimuth is not known with certainty. Previous experiments using short-term deflector loft pigeons indicated that the sun compass may be calibrated by referencing celestial polarization patterns. The present paper describes important measurable changes in the previously reported orientation behaviour of short-term deflector loft birds, and suggests a correlation between these changes and the presence of a massive upper-atmospheric dust cloud of volcanic origin which significantly altered natural skylight polarization patterns in 1982 and 1983. Moreover, it is shown that when the short-term effect was absent (at times when data from previous years suggested it should be present), the birds were also not using sun compass orientation, as demonstrated by their failure to show the standard ‘clockshift’ response to a 6-h fast shift of their internal clocks. These results support the hypothesis that reflected light cues, rather than odours, are the basis of the deflector loft effect in pigeon homing.  相似文献   

17.
Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.  相似文献   

18.
Desert navigators en miniature Cataglyphis, a strictly diurnal, heat‐tolerant, high‐speed desert ant, employs a path integrator as its main navigational means. By continually measuring directions steered and distances covered the path integrator computes a navigation vector, which can lead the ant directly back to its central place, the nest, and to any point which it has visited before. The path integration vector receives compass information from the pattern of polarized light in the sky (via a set of specialized photoreceptors at the dorsal rim of the eye), and derives information about travel distance from a stride integrator (pedometer) and an optic‐flow meter exploiting self‐induced image motion across the ventral retina. The path integrator is fully functional already at the beginning of the ant's foraging life. Later it keeps running whenever the ant is on a foraging excursion irrespective of whether other navigational tools are at work as well. Finally it provides a scaffold for landmark learning. View‐based landmark information is acquired by taking panoramic “snapshots” at certain places and routes. By comparing this memorized visual information with the actual one received during later journeys the ants are able to return to familiar places and to follow familiar routes even without the aid of the path integrator. The ant's navigational performances known to date can be simulated by designing a decentralized network, in which the individual tools are interconnected in flexible and context dependent ways.  相似文献   

19.
Orientation of birds in total darkness   总被引:1,自引:0,他引:1  
Magnetic compass orientation of migratory birds is known to be light dependent, and radical-pair processes have been identified as the underlying mechanism. Here we report for the first time results of tests with European robins, Erithacus rubecula, in total darkness and, as a control, under 565 nm green light. Under green light, the robins oriented in their normal migratory direction, with southerly headings in autumn and northerly headings in spring. By contrast, in darkness they significantly preferred westerly directions in spring as well as autumn. This failure to show the normal seasonal change characterizes the orientation in total darkness as a "fixed direction" response. Tests in magnetic fields with the vertical or the horizontal component inverted showed that the preferred direction depended on the magnetic field but did not involve the avian inclination compass. A high-frequency field of 1.315 MHz did not affect the behavior, whereas local anesthesia of the upper beak resulted in disorientation. The behavior in darkness is thus fundamentally different from normal compass orientation and relies on another source of magnetic information: It does not involve the radical-pair mechanism but rather originates in the iron-containing receptors in the upper beak.  相似文献   

20.
For spatial navigation many insects rely on compass information derived from the polarization pattern of the sky. We demonstrate that tethered flying desert locusts (Schistocerca gregaria) show e-vector-dependent yaw-torque responses to polarized light presented from above. A slowly rotating polarizer (5.3° s–1) induced periodic changes in yaw torque corresponding to the 180° periodicity of the stimulus. Control experiments with a rotating diffuser, a weak intensity pattern, and a stationary polarizer showed that the response is not induced by intensity gradients in the stimulus. Polarotaxis was abolished after painting the dorsal rim areas of the compound eyes black, but remained unchanged after painting the eyes except the dorsal rim areas. During rotation of the polarizer, two e-vectors (preferred and avoided e-vector) induced no turning responses: they were broadly distributed from 0 to 180° but, for a given animal, were perpendicular to each other. The data demonstrate polarization vision in the desert locust, as shown previously for bees, flies, crickets, and ants. Polarized light is perceived through the dorsal rim area of the compound eye, suggesting that polarization vision plays a role in compass navigation of the locust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号