首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon dioxide production and oxygen uptake were measured in undisturbed sediment cores taken during winter from four lakes of different trophic state. Respiration was measured at 5, 10, 15 and 20°C at high oxygen saturation (75–100%). The respiratory quotient, calculated from the mean values of carbon dioxide production and oxygen uptake at each temperature for each lake, was 0.83–0.96 with a mean value for the four lakes of 0.90. At very low oxygen saturations (<10%) carbon dioxide production was 21–42% of the production at 20°C and high oxygen saturations. The results indicate that under aerobic conditions, oxygen uptake and carbon dioxide production are closely-coupled processes in these lake sediments.  相似文献   

2.
Measurement of pulmonary gas uptake and elimination is often performed, using nitrogen as marker gas to measure gas flow, by applying the Haldane transformation. Because of the inability to measure nitrogen with conventional equipment, measurement is difficult during inhalational anesthesia. A new method is described, which is compatible with any inspired gas mixture, in which fresh gas and exhaust gas flows are measured using carbon dioxide as an extractable marker gas. A system was tested in eight patients undergoing colonic surgery for automated measurement of uptake of oxygen, nitrous oxide, isoflurane, and elimination of carbon dioxide with this method. Its accuracy and precision were compared with simultaneous measurements made with the Haldane transformation and corrected for predicted nitrogen excretion by the lungs. Good agreement was obtained for measurement of uptake or elimination of all gases studied. Mean bias was -0.003 l/min for both oxygen and nitrous oxide uptake, -0.0002 l/min for isoflurane uptake, and 0.003 l/min for carbon dioxide elimination. Limits of agreement lay within 30% of the mean uptake rate for nitrous oxide, within 15% for oxygen, within 10% for isoflurane, and within 5% for carbon dioxide. The extractable marker gas method allows accurate and continuous measurement of gas uptake and elimination in an anesthetic breathing system with any inspired gas mixture.  相似文献   

3.
Summary Oxygen uptake, carbon dioxide evolution and nitrogenase activity, measured either as hydrogen evolution (under argon 80%, oxygen 20%) or as the reduction of acetylene to ethylene, were assayed over the same time period by a direct mass-spectrometric method. When carbon dioxide evolution was used to estimate carbohydrate consumption, the results agreed with other work on whole plants. The RQ values obtained in these experiments were always less than 1.0 and thus the carbohydrate consumption calculated from oxygen uptake suggests that previous estimates, using carbon dioxide evolution as a measure of the cost of nitrogen fixation may be underestimates. Lag periods observed in the reduction of acetylene to ethylene suggest that there is a resistance to diffusion of gases in the root nodules.  相似文献   

4.
Gas phase composition effects on suspension cultures of Taxus cuspidata   总被引:2,自引:0,他引:2  
The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production oftaxol. High carbon dioxide concentration (10% v/v) inhibited taxol production. The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown underambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
This study investigated the heterotrophic growth behavior of mung beans cultivated in an individual bed under water supply. The fresh weight of mung beans in the bed was estimated, and changes in temperature, and oxygen and carbon dioxide concentrations were recorded during the cultivation period. The specific growth rate, oxygen uptake rate, and carbon dioxide evolution rate, based on the fresh weight in the bed, were calculated. Growth under heterotrophic cultivation can be classified into the following three stages. Reductions in specific oxygen uptake rate, specific carbon dioxide evolution rate, and specific energy production rate corresponded to that of specific growth rate. Indicators of biological activity related to oxygen and carbon dioxide were evaluated quantitatively for beds under high-density heterotrophic cultivation. Moreover, the results obtained from this study successfully demonstrate that there is a relationship between the growth of mung beans and indicators of biological activity.  相似文献   

6.
A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well-mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 +/- 0.17 x 10(-5) m/s and 4.52 +/- 0.60 x 10(-6) m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates.  相似文献   

7.
Effects of Humidity on Photosynthesis   总被引:2,自引:0,他引:2  
It was found for two species that net carbon dioxide uptakerates were reduced at constant intercellular carbon dioxidepartial pressure when single attached leaves were exposed tolarge leaf to air water vapour pressure differences. Leaf temperature,irradiance, and ambient carbon dioxide and oxygen partial pressureswere kept constant. Net carbon dioxide uptake rates decreasedlinearly with increasing vapour pressure difference, even incases where transpiration rates were highest at intermediatevalues of vapour pressure difference. Decreases in net carbondioxide uptake rates were quickly reversible. Different windspeeds across the measured leaf, different vapour pressure deficitsaround the rest of the shoot, and transient responses of netcarbon dioxide uptake rate to abrupt changes in vapour pressuredifference all gave the same response of net carbon dioxideuptake rate to vapour pressure difference. The data show thatthe inhibition of net carbon dioxide uptake rate at a givenvapour pressure difference was not simply related to whole leaftranspiration rate or stomatal conductance. Key words: Vapour pressure difference, CO2 uptake rate, Leaf temperature  相似文献   

8.
In resting conscious dogs physiological dead space was calculated using the Bohr equation and measurements of arterial and mixed expired carbon dioxide tension. Whenever dogs inhaled carbon dioxide mixtures (5-10%) that had normal or low oxygen concentrations, the calculated dead space became negative. This paradox was based on the fact that the mixed expired carbon dioxide tension in resting hypercapnic dogs. Under these circumstances carbon dioxide was produced from the lung as measured by gas analyses and blood analyses. By the lung as measured by gas analyses and blood analyses. By reasoning this implies that "alveolar" carbon dioxide tension was higher than pulmonary venous carbon dioxide tension. The negative carbon dioxide gradient persisted at 14 days of chronic hypercapnia and reverted to normal within 10 min of breathing air after chronic hypercapnia. These findings suggest that the exchange of carbon dioxide in the lung cannot be explained solely on the basis of passive diffusion.  相似文献   

9.
The respiration and potassium uptake of beet and potato diskshave been measured in the presence of protocatechuic acid. Itis found that protocatechuic acid in a concentration of 10–3to 3 x 10–3 M at pH 6, stimulates both oxygen uptake andcarbon dioxide output. This stimulation of respiration is accompaniedby a reduction in potassium uptake. Experiments with carbon monoxide indicate that polyphenol oxidasemediates the ‘extra’ respiration in the presenceof protocatechuic acid, although this enzyme does not appearto play any part in the normal respiration, at least in 5 percent oxygen. These results are considered in relation to previousclaims concerning the role of polyphenol oxidase in salt uptakeand respiration of potato disks. Potassium uptake by potato disks is light-reversibly inhibitedby carbon monoxide, indicating the participation of cytochromeoxidase in salt uptake in this, as in other tissues.  相似文献   

10.
磷化氢、二氧化碳混合气体对腐食酪螨成螨的生物学效应   总被引:1,自引:0,他引:1  
本文研究结果表明:腐食酪螨Tyrophagus putretcentiae(Schrank)成螨在0%、8%、16%(容积比)CO2气体中耗氧量随CO2浓度的增加而增加,当在32%、64% CO2:气体中,该成螨的耗氧量反倒低于其在正常大气中的耗氧量。在0%、8%、16% 32% 64%CO2与0.05mg/LPH3混合气体中该戍螨对PH3的吸收量分别为1.11±0.92、1.79±0.56 、5.14±1.13、7.60±1.80、8.08±0.85μg/hr'g,在同一CO2浓度条件下试螨对PH3的吸收量在高浓度PH3(0.45mg/L)中明显大于在低浓度PH3,(0.05mg/L)中,但PH3,吸收量的增加倍数远远低于PH3浓度的增加倍数。PH3,对该螨过氧化氢酶的抑制体内酶高于离体酶,细胞色素c氧化酶受PH3抑制则相反。被PH3抑制的过氧化氢酶和细胞色素c氧化酶活性恢复时间分别为二周和一周。本文还对PH3的可能杀螨机理及CO2在此过程中的作用进行了讨论。  相似文献   

11.
Respirometry is a precious tool for determining the activity of microbial populations. The measurement of oxygen uptake rate is commonly used but cannot be applied in anoxic or anaerobic conditions or for insoluble substrate. Carbon dioxide production can be measured accurately by gas balance techniques, especially with an on-line infrared analyzer. Unfortunately, in dynamic systems, and hence in the case of short-term batch experiments, chemical and physical transfer limitations for carbon dioxide can be sufficient to make the observed carbon dioxide evolution rate (OCER) deduced from direct gas analysis very different from the biological carbon dioxide evolution rate (CER).To take these transfer phenomena into account and calculate the real CER, a mathematical model based on mass balance equations is proposed. In this work, the chemical equilibrium involving carbon dioxide and the measured pH evolution of the liquid medium are considered. The mass transfer from the liquid to the gas phase is described, and the response time of the analysis system is evaluated.Global mass transfer coefficients (K(L)a) for carbon dioxide and oxygen are determined and compared to one another, improving the choice of hydrodynamic hypotheses. The equations presented are found to give good predictions of the disturbance of gaseous responses during pH changes.Finally, the mathematical model developed associated with a laboratory-scale reactor, is used successfully to determine the CER in nonstationary conditions, during batch experiments performed with microorganisms coming from an activated sludge system. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 243-252, 1997.  相似文献   

12.
Summary Carbon dioxide and oxygen gas exchange of illuminated Amaranthus and Phaseolus leaves was measured from 0–600 ppm of CO2 in an open system.At low oxygen concentration (2% O2) the ratio of CO2 uptake to O2 evolution came close to 1.At high oxygen partial pressure (42% O2) the O2 compensation point of an Amaranthus leaf was increased and oxygen evolution was depressed. Accordingly the CO2/O2 quotients were variable; the lowest value of 1,9 differed significantly from 1,0.The oxygen and carbon dioxide compensation points of a Phaseolus leaf were increased at high oxygen concentration (42% O2) and oxygen evolution as well as carbon dioxide uptake were reduced. Therefore the ratios CO2 over O2 varied and differed greatly from 1,0.It was concluded that the nature of photosynthates is regulated by the gas composition around the leaves.  相似文献   

13.
Free flap surgical procedures are technically challenging, and anastomosis failure may lead to arterial or venous occlusion and flap necrosis. To improve myocutaneous flap survival rates, more reliable methods to detect ischemia are needed. On the basis of theoretical considerations, carbon dioxide tension, reflecting intracellular acidosis, may be suitable indicators of early ischemia. It was hypothesized that tissue carbon dioxide tension increased rapidly when metabolism became anaerobic and would be correlated with acute venoarterial differences in lactate levels, potassium levels, and acid-base parameters. Because metabolic disturbances have been observed to be less pronounced in flaps with venous occlusion, it was hypothesized that tissue carbon dioxide tension and venoarterial differences in lactate and potassium levels and acid-base parameters would increase less during venous occlusion than during arterial occlusion. In 14 pigs, latissimus dorsi myocutaneous flaps were surgically isolated, exposed to acute ischemia for 150 minutes with complete arterial occlusion (seven subjects) or venous occlusion (seven subjects), and reperfused for 30 minutes. After arterial occlusion, pedicle blood flow decreased immediately to less than 10 percent of baseline flow. Blood flow decreased more slowly after venous occlusion but within 3 minutes reached almost the same low levels as observed during arterial occlusion. Venous oxygen saturation decreased from approximately 70 percent to approximately 20 percent, whereas oxygen uptake was almost arrested. Tissue carbon dioxide tension increased to two times baseline values in both groups (p < 0.01). The venoarterial differences in carbon dioxide tension, pH, base excess, glucose levels, lactate levels, and potassium levels increased significantly (p < 0.01). Tissue carbon dioxide tension measured during the occlusion period were closely correlated with venoarterial differences in pH, base excess, glucose levels, lactate levels, and potassium levels (median r2, 0.67 to 0.92). After termination of arterial or venous occlusion, more pronounced hyperemia was observed in the arterial occlusion group than in the venous occlusion group (p < 0.05). Oxygen uptake (p < 0.05) and venoarterial differences in lactate and potassium levels (p < 0.05) were significantly more pronounced in the arterial occlusion group. In the venous occlusion group, with less pronounced hyperemia, venoarterial differences in acid-base parameters remained significantly different from baseline values before occlusion (p < 0.01). The data indicate that tissue carbon dioxide tension can be used to detect anaerobic metabolism, caused by arterial or venous occlusion, in myocutaneous flaps. The correlations between carbon dioxide tension and venoarterial differences in acid-base parameters were excellent. Because carbon dioxide tension can be measured continuously in real time, such measurements are more likely to represent a clinically useful parameter than are venoarterial differences.  相似文献   

14.
The general characteristics of diapause respiration in P. brassicae are described, together with an examination of short-term (supradian) and long-term (infradian) variation in oxygen uptake. Supradian cycles occur approximately every 3 hr at 10°C and are shown by closed box analyses to be initiated by carbon dioxide bursts. Maximal rates of oxygen uptake occur shortly after the burst in carbon dioxide release, not at the start of the burst as recorded in other diapausing species. The frequency of supradian cycles is directly related to temperature and metabolism in accordance with the characteristics of discontinuous carbon dioxide release.Infradian cycles of between 3 and 7 days duration are recorded for both oxygen uptake and net exchange rates. Peaks in oxygen demand occur on average every 4 days at 10°C, and are related in frequency to the level of metabolism of individual pupae. Just before post-diapause development, oxygen demands fall to about half their normal levels; these changes are associated with appropriate changes in the frequency of supradian and infradian cycles.  相似文献   

15.
Oxygen toxicity in Astasia   总被引:3,自引:3,他引:0       下载免费PDF全文
1. Exposure of Astasia longa to oxygen+carbon dioxide (95:5) at atmospheric pressure leads to an inhibition of growth rate and of respiration. Growth resumes at the normal rate as soon as the oxygenation is discontinued, but respiration recovers more slowly. 2. Mitochondria prepared from cells exposed to oxygen+carbon dioxide (95:5) during growth have considerably decreased activities of succinate-cytochrome c oxidoreductase, NADH-cytochrome c oxidoreductase, succinate dehydrogenase and succinate oxidase activities as compared with mitochondria obtained from cells exposed to air+carbon dioxide (95:5). Cytochrome oxidase activity is not appreciably inhibited by exposure of the cells to 95% oxygen. 3. The mitochondrial fraction of Astasia contains rhodoquinone. The rhodoquinone concentration increases in cells exposed to 95% oxygen. The content of ergosterol-containing compounds also increases in the mitochondria of cells exposed to 95% oxygen. There is little change in the ubiquinone content of the mitochondrial fraction. The ubiquinone of Astasia appears to be ubiquinone-45.  相似文献   

16.
A method was developed for the simultaneous measurement of acetylene reduction, carbon dioxide evolution and oxygen uptake by individual root nodules of intact nitrogen-fixing plants (Alnus rubra Bong.). The nodules were enclosed in a temperature-controlled leak-tight cuvette. Assay gas mixtures were passed through the cuvette at a constant, known flow rate and gas exchange was measured by the difference between inlet and outlet gas compositions. Gas concentrations were assayed by a combination of an automated gas chromatograph and a programmable electronic integrator. Carbon dioxide and ethylene evolution were determined with a coefficient of variation which was less than 2%, whereas the coefficient of variation for oxygen uptake measurements was less than 5%. Nodules subjected to repeated removal from and reinsertion into the cuvette and to long exposures of 10% v/v acetylene showed no irreversible decline in respiration or acetylene reduction. This system offers long-term stability and freedom from disturbance artifacts plus the ability to monitor continuously, rapidly and specifically the changes in root nodule activity caused by environmental perturbation.  相似文献   

17.
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport.  相似文献   

18.
Summary Short-term manometric experiments with bacteria-free cultures of Anabaena cylindrica showed that the close dependency of nitrogen fixation upon photosynthesis could be temporarily eliminated in nitrogen-starved cells. Initial rates of nitrogen uptake by these cells in the absence of carbon dioxide were equally rapid in the light and dark, decreasing and finally ceasing after two hours. Continued steady nitrogen uptake was only maintained for long periods in the presence of carbon dioxide in the light. In the dark, nitrogen uptake was accompanied by carbon dioxide evolution.More oxygen was evolved in the light by cells fixing nitrogen than by those incubated under argon. This additional oxygen evolution could be accounted for by extra carbon dioxide fixation in the presence of nitrogen.Of a number of organic compounds tested, only sodium pyruvate stimulated nitrogen fixation. This stimulation was achieved both in the light and dark and in the presence and absence of carbon dioxide, showing that the role of pyruvate was other than acting as a carbon skeleton.Three metabolic inhibitors, cyanide and chlorpromazine (chiefly respiratory) and phenylurethane (photosynthetic) differentially inhibited photosynthesis and nitrogen fixation. The latter inhibitor had a more marked effect on photosynthesis while the two chiefly respiratory inhibitors had a stronger effect on nitrogen fixation.  相似文献   

19.
Mass spectrometry: A tool for on-line monitoring of animal cell cultures   总被引:1,自引:0,他引:1  
The magnetic sector mass spectrometer is able to detect oxygen uptake and carbon dioxide production rates from animal cell cultivations performed in 101 biorectors. Such data have not been available with the use of classic exhaust gas analysis applying paramagnetic analyzers and infra-red sensors due to the insensitivity of the apparatus available. In the course of the present work we were able to demonstrate, that the oxygen uptake rate correlates to the number of viable cells. Additionally oxygen uptake rates supplied on-line information about the actual physiology of the cells: When the rates changed during the cultivation process, this immediately indicated the occurrence of limitations of components in the medium. The information could be useful in timing key events, such as performing splits or harvesting the bioreactor.Abbreviations OUR oxygen uptake rate - CDPR carbon dioxide production rate - RQ respiratory quotient This publication is dedicated to the 65 th birthday of Prof. Dr. F. Wagner, University of Braunschweig.  相似文献   

20.
A model that continuously predicts the concentration of microorganisms in complex medium fermentations is suggested. The model uses carbon dioxide evolution as its primary input and assumes that respiration activity can be differentiated into growth-related and maintenance-related functions. This model can be programmed on computer-coupled vessels and used to standardize on a physiological fermentation inoculum transfer time. The cell concentration estimate can also be used to calculate specific growth rate and can be combined with additional monitored information to calculate other important fermentation parameters such as specific oxygen uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号