首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

2.
Quercetin is a potent antioxidant and has been extensively used as a therapy intervention to prevent age-associated diseases. However, emerging studies showed it can also act as a prooxidant and induce H2O2 under certain conditions. In the current study, our results showed that quercetin contributed to the pathogen resistance in Arabidopsis thaliana (Arabidopsis) in response to the infection of virulent strain Pseudomonas syringae pv. Tomato DC3000 (Pst). Various defense responses, such as H2O2 burst, callose deposition, cell death, PR1 (pathogenesis-related 1) and PAL1 (Phe ammonia-lyase 1) gene expression, have been investigated in quercetin-pretreated Pst-inoculated Arabidopsis Col-0 and there was a strong defensive response in quercetin-pretreated Arabidopsis against virulent Pst. However, with the presence of catalase, the protective effects of quercetin on pathogen resistance to virulent Pst disappeared in Arabidopsis, suggesting that H2O2 may play a key role in plant defense responses. In addition, we confirmed that quercetin did not show any beneficial effect on pathogen-free leaves in Arabidopsis, indicating that pathogen challenge is also required to induce the defense responses in quercetin-pretreated Arabidopsis. Furthermore, strong defense responses have been observed in quercetin-pretreated Arabidopsis mutant jar1, ein2, and abi1-2 under Pst challenge, whereas no protective effect has been observed in quercetin-pretreated Arabidopsis mutant NahG and npr1. These findings indicate that quercetin induces the resistance to Pst in Arabidopsis via H2O2 burst and involvement of SA and NPR1.  相似文献   

3.
Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015, exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H2O2) production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous cell death lesions.  相似文献   

4.
The Rpi-blb2 recognizes the presence of the Phytophthora infestans AVRblb2 and initiates effector-triggered immunity (ETI). We performed gain-of-function and loss-of-function studies in Nicotiana benthamiana to elucidate Rpi-blb2-mediated resistance to P. infestans. Rpi-blb2 triggered a hypersensitive response through SGT1-mediated, but not RAR-mediated or HSP90-mediated, pathways. NbSGT1 was also required for basal and ETI-mediated by Rpi-blb2 in N. benthamiana. Moreover, salicylic acid (SA) affected basal defense and Rpi-blb2-mediated resistance against P. infestans. The increased susceptibility of Rpi-blb2-transgenic plants in the NahG-background correlated with reduced levels of SA. These findings provide evidence for the roles of SGT1- and SA-signaling in Rpi-blb2-mediated resistance against P. infestans.  相似文献   

5.
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.  相似文献   

6.
7.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

8.
9.
To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Δyca1), cytochrome c (Δcyc1,7) and both (Δcyc1,7Δyca1) were compared for AA-PCD occurrence, hydrogen peroxide (H2O2) production and caspase activity. AA-PCD occurs in Δcyc1,7 and Δcyc1,7Δyca1 cells slower than in wt, but similar to that in Δyca1 cells, in which no cytochrome c release occurs. Both H2O2 production and caspase activation occur in these cells with early and extra-activation in Δcyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.  相似文献   

10.
Although hydrogen peroxide (H2O2) and nitric oxide (NO) can act as an upstream signaling molecule to modulate the dynamic microtubule cytoskeleton during the defense responses to Verticillium dahliae (VD) toxins in Arabidopsis, it is not known the relationship between these two signaling molecules. Here, we show that VD-toxin-induced NO accumulation was dependent on prior H2O2 production, NO is downstream of H2O2 in the signaling process, and that H2O2 acted synergistically with NO to modulate the dynamic microtubule cytoskeleton responses to VD-toxins in Arabidopsis.  相似文献   

11.
Glutathione peroxidases (GPXs) are a group of enzymes that protect cells against oxidative damage generated by reactive oxygen species (ROS). GPX catalyzes the reduction of hydrogen peroxide (H2O2) or organic hydroperoxides to water or alcohols by reduced glutathione. The presence of GPXs in plants has been reported by several groups, but the roles of individual members of this family in a single plant species have not been studied. Two GPX cDNAs were isolated and characterized from the embryogenic callus of Panax ginseng. The two cDNAs had an open reading frame (ORF) of 723 and 681 bp with a deduced amino acid sequence of 240 and 226 residues, respectively. The calculated molecular mass of the matured proteins are approximately 26.4 kDa or 25.7 kDa with a predicated isoelectric point of 9.16 or 6.11, respectively. The two PgGPXs were elevated strongly by salt stress and chilling stress in a ginseng seedling. In addition, the two PgGPXs showed different responses against biotic stress. The positive responses of PgGPX to the environmental stimuli suggested that ginseng GPX may help to protect against environmental stresses.  相似文献   

12.
Paracoccidioidomycosis is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis (P. brasiliensis). Most often, this mycosis runs as a chronic progressive course affecting preferentially the lungs. In vitro fungicidal activity against a high virulent strain of P. brasiliensis by murine peritoneal macrophages preactivated with IFN-γ or TNF-α is high and correlates with increased NO and H2O2 production. Within this context, the purpose of this work was to study the role of suppressor cytokines, such as IL-10 and TGF-β, in this process. Incubation of either IFN-γ or TNF-α with IL-10 inhibits fungicidal activity of these cells. However, TGF-β had no effect on fungicidal activity of IFN-γ or TNF-α-activated macrophages. The suppression of fungicidal activity by IL-10 correlated with the inhibition of NO and H2O2 production supporting the involvement of these metabolites in P. brasiliensis killing. These results suggest that IL-10 production in vivo could represent an evasion mechanism of the fungus to avoid host immune response.  相似文献   

13.
To ascertain the effect of exogenously applied hydrogen peroxide (H2O2) on drought stress, we examined whether the spraying of soybean leaves with H2O2 would alleviate the symptoms of drought stress. Pre-treatment by spraying leaves with H2O2 delayed foliar wilting caused by drought stress compared to leaves sprayed with distilled water (DW). Additionally, the relative water content of drought-stressed leaves pre-treated with H2O2 was higher than that of leaves pre-treated with DW. Therefore, we analyzed the effect of H2O2 spraying on photosynthetic parameters and on the biosynthesis of oligosaccharides related to water retention in leaves during drought stress. Under conditions of drought stress, the net photosynthetic rate and stomatal conductance of leaves pre-treated with H2O2 were higher than those of leaves pre-treated with DW. In contrast to DW spraying, H2O2 spraying immediately caused an increase in the mRNA levels of d-myo-inositol 3-phosphate synthase 2 (GmMIPS2) and galactinol synthase (GolS), which encode key enzymes for the biosynthesis of oligosaccharides known to help plants tolerate drought stress. In addition, the levels of myo-inositol and galactinol were higher in H2O2-treated leaves than in DW-treated leaves. These results indicated that H2O2 spraying enabled the soybean plant to avoid drought stress through the maintenance of leaf water content, and that this water retention was caused by the promotion of oligosaccharide biosynthesis rather than by rapid stomatal closure.  相似文献   

14.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   

15.
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H2 consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H2 evolution and the light-dependent H2 production in the presence of thiosulfate. Both Hox+ and Hup+ mutants demonstrated light-dependent H2 uptake stimulated by CO2 but only the Hup+ mutant was able to mediate O2-dependent H2 consumption in the dark. The ability of the Hox+ mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO2, H2, light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.  相似文献   

16.
To evaluate the physiological importance of cytosolic ascorbate peroxidase (APX) in the reactive oxygen species (ROS)-scavenging system, a full-length cDNA clone, named LmAPX, encoding a cytosolic ascorbate peroxidase was isolated from Lycium chinense Mill. using homologous cloning, then the expression of LmAPX under salt stress was investigated. After sequencing and related analysis, the LmAPX cDNA sequence was 965 bp in length and had an open reading frame (ORF) of 750 bp coding for 250 amino acids. Furthermore, the LmAPX sequence was sub-cloned into prokaryotic expression vector pET28a and the recombinant proteins had a high expression level in Escherichia coli. Results from a southern blot analysis indicated that three inserts of this gene existed in the tobacco genome encoding LmAPX. Compared with the control plants (wild-type and empty vector control), the transgenic plants expressing the LmAPX gene exhibited lower amount of hydrogen peroxide (H2O2) and relatively higher values of ascorbate peroxidase activity, proline content, and net photosynthetic rate (Pn) under the same salt stress. These results suggested that overexpression of the LmAPX gene could decrease ROS production caused by salt stress and protect plants from oxidative stress.  相似文献   

17.
18.
19.
Here we examined whether Ca2+/Calmodulin (CaM) is involved in abscisic acid (ABA)-induced antioxidant defense and the possible relationship between CaM and H2O2 in ABA signaling in leaves of maize (Zea mays L.) plants exposed to water stress. An ABA-deficient mutant vp5 and its wild type were used for the experimentation. We found that water stress enhanced significantly the contents of CaM and H2O2, and the activities of chloroplastic and cytosolic superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and the gene expressions of the CaM1, cAPX, GR1 and SOD4 in leaves of wild-type maize. However, the increases mentioned above were almost arrested in vp5 plants and in the wild-type plants pretreated with ABA biosynthesis inhibitor tungstate (T), suggesting that ABA is required for water stress-induced H2O2 production, the enhancement of CaM content and antioxidant defense. Besides, we showed that the up-regulation of water stress-induced antioxidant defense was almost completely blocked by pretreatment with Ca2+ inhibitors, CaM antagonists and reactive oxygen (ROS) manipulators. Moreover, the analysis of time course of CaM and H2O2 production under water stress showed that the increase in CaM content preceded that of H2O2. These results suggested that Ca2+/CaM and H2O2 were involved in the ABA-induced antioxidant defense under water stress, and the increases of Ca2+/CaM contents triggered H2O2 production, which inversely affected the contents of CaM. Thus, a cross-talk between Ca2+/CaM and H2O2 may play a pivotal role in the ABA signaling.  相似文献   

20.
Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号