首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hydrogen gas (H2) is an endogenous gaseous molecule in plants. Although its reputation is as a “biologically inert gas”, recent results suggested that H2 has therapeutic antioxidant properties in animals and plays fundamental roles in plant responses to environmental stresses. However, whether H2 regulates root morphological patterns is largely unknown. In this report, hydrogen-rich water (HRW) was used to characterize H2 physiological roles and possible signaling transduction pathways in the promotion of adventitious root (AR) formation in cucumber explants. Our results showed that a 50% concentration of HRW was able to mimic the effect of hemin, an inducer of a carbon monoxide (CO) synthetic enzyme, and heme oxygenase-1 (HO-1), in restoring AR formation in comparison with the inhibition effect conferred by auxin-depletion treatment alone. It was further shown that the inducible effect of HRW could be further blocked by the co-treatment with N-1-naphthylphtalamic acid (NPA; an auxin transport inhibitor). The HRW-induced response, at least partially, was HO-1-dependent. This conclusion was supported by the fact that the exposure of cucumber explants to HRW up-regulates cucumber HO-1 gene expression and its protein levels. HRW-mediated induction of representative target genes related to auxin signaling and AR formation, such as CsDNAJ-1, CsCDPK1/5, CsCDC6, CsAUX22B-like, and CsAUX22D-like, and thereafter AR formation (particularly in the AR length) was differentially sensitive to the HO-1 inhibitor zinc protoporphyrin IX (ZnPP). Above blocking actions were clearly reversed by CO, further confirming that the above response was HO-1/CO-specific. However, the addition of a well-known antioxidant, ascorbic acid (AsA), failed to influence AR formation triggered by HRW, thus ruling out the involvement of redox homeostasis in this process. Together, these results indicated that HRW-induced adventitious rooting is, at least partially, correlated with the HO-1/CO-mediated responses. We also suggested that exogenous HRW treatment on plants might be a good option to induce root organogenesis.  相似文献   

2.
3.
To investigate the role of catalase and superoxide dismutase (SOD) in the acetic acid (AA) induced yeast programmed cell death (AA-PCD), we compared Saccharomyces cerevisiae cells (C-Y) and cells individually over-expressing catalase T (CTT1-Y) and Cu,Zn-SOD (SOD1-Y) with respect to cell survival, hydrogen peroxide (H2O2) levels and enzyme activity as measured up to 200 min after AA treatment. AA-PCD does not occur in CTT1-Y, where H2O2 levels were lower than in C-Y and the over-expressed catalase activity decreased with time. In SOD1-Y, AA-PCD was exacerbated; high H2O2 levels were found, SOD activity increased early, remaining constant en route to AA-PCD, but catalase activity was strongly reduced.  相似文献   

4.
Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.  相似文献   

5.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

6.
This study investigated whether slow-releasing organic hydrogen sulfide donors act through the same mechanisms as those of inorganic donors to protect neurons from oxidative stress. By inducing oxidative stress in a neuronal cell line HT22 with glutamate, we investigated the protective mechanisms of the organic donors: ADT-OH [5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione], the most widely used moiety for synthesizing slow-releasing hydrogen sulfide donors, and ADT, a methyl derivative of ADT-OH. The organic donors were more potent than the inorganic donor sodium hydrogensulfide (NaHS) in protecting HT22 cells against glutamate toxicity. Consistent with previous publications, NaHS partially restored glutamate-depleted glutathione (GSH) levels, protected HT22 from direct free radical damage induced by hydrogen peroxide (H2O2), and NaHS protection was abolished by a KATP channel blocker glibenclamide. However, neither ADT nor ADT-OH enhanced glutamate-depleted GSH levels or protected HT22 from H2O2-induced oxidative stress. Glibenclamide, which abolished NaHS neuroprotection against oxidative stress, did not block ADT and ADT-OH neuroprotection against glutamate-induced oxidative stress. Unexpectedly, we found that glutamate induced AMPK activation and that compound C, a well-established AMPK inhibitor, remarkably protected HT22 from glutamate-induced oxidative stress, suggesting that AMPK activation contributed to oxidative glutamate toxicity. Interestingly, all hydrogen sulfide donors, including NaHS, remarkably attenuated glutamate-induced AMPK activation. However, under oxidative glutamate toxicity, compound C only increased the viability of HT22 cells treated with NaHS, but did not further increase ADT and ADT-OH neuroprotection. Thus, suppressing AMPK activation likely contributed to ADT and ADT-OH neuroprotection. In conclusion, hydrogen sulfide donors acted through differential mechanisms to confer neuroprotection against oxidative toxicity and suppressing AMPK activation was a possible mechanism underlying neuroprotection of organic hydrogen sulfide donors against oxidative toxicity.  相似文献   

7.
8.
9.
10.
Lipocalin-2 (Lcn2, NGAL) is a member of the lipocalin super family with diverse function such as the induction of apoptosis, the suppression of bacterial growth, and modulation of inflammatory response. Much interest has recently been focused on the physiological/pathological role of the lipocalin-2 that is considered to be a novel protective factor against oxidative stress. However, its precise biological roles in this protection are not fully understood. In this report we intended to test the effect of lipocalin-2 on the expression of heme oxygenase (1, 2) and superoxide dismutase (1, 2) which are two strong antioxidants. NGAL was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing NGAL and the expression of HO-1, 2 and SOD1, 2 were compared with appropriate controls by RT-PCR and western blot. On the other hand, expression of NGAL was suppressed by siRNA transfection in order to study the effect of lipocalin-2 on mentioned genes/proteins. The results showed that the expression of HO-1 and SOD1, 2 enzymes were higher in cells expressing recombinant lipocalin-2 compared with the control cells. Although the expression of HO-1 was lower in NGAL silencing cells, the expression of SOD1 and SOD2 were higher. Our data suggest that NGAL is a potent inducer of HO-1 and somewhat SOD1 and SOD2 and it appears that part of antioxidant property of NGAL could be attributed to the induction of HO-1and SOD1, 2.  相似文献   

11.
To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Δyca1), cytochrome c (Δcyc1,7) and both (Δcyc1,7Δyca1) were compared for AA-PCD occurrence, hydrogen peroxide (H2O2) production and caspase activity. AA-PCD occurs in Δcyc1,7 and Δcyc1,7Δyca1 cells slower than in wt, but similar to that in Δyca1 cells, in which no cytochrome c release occurs. Both H2O2 production and caspase activation occur in these cells with early and extra-activation in Δcyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.  相似文献   

12.
Hydrogen peroxide (H2O2) has been widely used to study the oxidative stress response. However, H2O2 is unstable and easily decomposes into H2O and O2. Consequently, a wide range of exposure times and treatment concentrations has been described in the literature. In the present study, we established a ferrous oxidation-xylenol orange (FOX) assay, which was originally described for food and body liquids, as a method for the precise quantification of H2O2 concentrations in cell culture media. We observed that the presence of FCS and high cell densities significantly accelerate the decomposition of H2O2, therefore acting as a protection against cell death by accidental necrosis.  相似文献   

13.
Qi Y  Wang H  Zou Y  Liu C  Liu Y  Wang Y  Zhang W 《FEBS letters》2011,(1):231-239
In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H2O2-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψm) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψm relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψm and inhibiting the amplification of ROS.  相似文献   

14.
We found that heme-binding protein 2/SOUL sensitised NIH3T3 cells to cell death induced by A23187 and etoposide, but it did not affect reactive oxygen species formation. In the presence of sub-threshold calcium, recombinant SOUL provoked mitochondrial permeability transition (mPT) in vitro that was inhibited by cyclosporine A (CsA). This effect was verified in vivo by monitoring the dissipation of mitochondrial membrane potential. Flow cytometry analysis showed that SOUL promoted necrotic death in A23187 and etoposide treated cells, which effect was prevented by CsA. These data suggest that besides its heme-binding properties SOUL promotes necrotic cell death by inducing mPT.  相似文献   

15.
16.
Summary Ethylene formation from 1-aminocycloprane-1-carboxylic acid (ACC) was studied in whole protoplasts, evaluolated protoplasts and isolated vacuoles from mesophyll cells of Petunia hybrida L. cv. Pink Magic. The re-formation of the large, central vacuole in evacuolated protoplasts and morphological characteristics of both types of protoplasts were examined by electron microscopy. Both the normal, whole protoplasts and vacuoles isolated from them produced ethylene from ACC at similar rates. Freshly-prepared evacuolated protoplasts had lost the capacity to produce ethylene. Re-formation of the central vacuole in these evacuolated protoplasts occurred between 14 to 17 h of incubation in the recovery medium and was followed by the development of ethyleneforming activity. Both these processes were inhibited by cycloheximide, indicating a requirement for new protein synthesis. Light stimulated the conversion of ACC to ethylene in both the regenerating, whole protoplasts and the evacuolated protoplasts that had re-formed the central vacuole.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CHI cycloheximide  相似文献   

17.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

18.
The glutathione transferases (GSTs) are a large group of enzymes having both detoxication roles and specialist metabolic functions. The present work represents an initial approach to identifying some of these roles by examining the variation of specific members of the family under differing conditions. The GSTs from Lucilia cuprina have been partially purified, members of two families being isolated, by the use of glutathione immobilised on epichlorhydrin-activated Sepharose 6B. The GSTs were separated by 2D SDS-PAGE and characterised by MALDI-TOF analysis of tryptic peptides. The mass fragments were then matched against the corresponding Drosophila melanogaster and Musca domestica sequences. GSTs were identified as coming from only the Sigma and Delta classes. The multiple Delta zones appear all to be derived from the Lucilia GSTD1 isoform. The distribution of these GST proteins has been studied during different developmental stages of the insect. Delta isoforms were present in all developmental stages of L. cuprina. The Sigma GST was not detectable in the egg, was just detectable in the larval and pupal stages and was the major GST isolated in the adult. Sigma and Delta isoforms were both found in all body segments of the insect. Both isoforms appear to undergo extensive post-translational modification. Activities of the two types of protein with model substrates have been determined.  相似文献   

19.
Cyclopentenone prostaglandins (cyPG) with antiinflammatory and antiproliferative properties have been envisaged as leads for the development of therapeutic agents. Because cyPG effects are mediated in part by the formation of covalent adducts with critical signaling proteins, it is important to assess the specificity of this interaction. By using biotinylated derivatives of 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)-B) and PGA(1) (PGA(1)-B) we herein provide novel evidence for the differential selectivity of protein modification by distinct cyPG. The marked quantitative and qualitative differences in the binding of 15d-PGJ(2)-B and PGA(1)-B to cellular proteins were related to a differential reactivity in the presence of glutathione (GSH), both in vitro and in intact cells. Therefore GSH levels may influence not only the intensity but also the specificity of cyPG action.  相似文献   

20.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号