首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24 h, then decreased gradually until 72 h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H2O2 amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H2O2, NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H2O2 elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H2O2 homeostasis in leaves caused by developmental cues and environmental stimuli.  相似文献   

2.
3.
The effects of Ca2+ on antioxidative enzymes and indole-3-acetic acid (IAA) oxidase during adventitious rooting were investigated in mung bean (Vigna radiata). CaCl2 significantly promoted the formation and growth of adventitious roots. EGTA (a Ca2+ chelator) or ruthenium red (a Ca2+-channel blocker) significantly inhibited root formation and growth, but these inhibitory effects could be partially reversed by CaCl2. Furthermore, inclusion of 5 mM CaCl2 significantly increased superoxide dismutase (SOD) activity by 10% at 3 h and catalase (CAT) activity by an average of 29.6% at each time point. CaCl2 decreased peroxidase (POD) activity by 9.4% and 21% at 12 and 24 h, respectively, and ascorbate peroxidase (APX) activity by an average of 13.9% at each time point. These CaCl2-induced changes in enzymatic activities were similar to changes caused by indole-3-butyric acid (IBA). Treatment with EGTA or ruthenium red decreased SOD activity by an average of 18.4% and 15.2%, respectively; POD activity by 27.4% and 57.6%, respectively; APX activity by 10.3% and 15.6%, respectively; and CAT activity by 19.3% and 5.2%, respectively, when compared with CaCl2. In addition, CaCl2 increased IAA oxidase activity by an average of 5.5% beginning at 6 h, whereas EGTA significantly decreased IAA oxidase activity by 29.2%, 22.9%, and 13.5% at 6, 9, and 12 h, respectively. The inhibitory effects of EGTA could be partially suppressed by addition of CaCl2. These results imply that the stimulative effect of Ca2+ on adventitious rooting is partially related to Ca2+-induced changes in the activities of antioxidative enzymes and IAA oxidase.  相似文献   

4.
Three sweet potato varieties, Taoyuan 2, Simon 1 and Sushu 18, were pretreated with four levels of CaCl2 (0, 60, 120 and 180 kg ha?1) weekly for 50 days from planting before being subjected to non‐flooding (control) and flooding conditions. The experiment used a randomised complete block design with a split‐split plot arrangement of treatments. Young, fully expanded leaves from each plant were clipped for measuring enzyme activities and antioxidant contents. The three genotypes exhibited unique abilities and specificities through the antioxidative systems in response to flooding stress. The level of activity of the antioxidative system in sweet potato leaves was related to CaCl2 pretreatment during flooding. The ascorbate peroxidase, superoxide dismutase, glutathione reductase, reduced ascorbate, total ascorbate, reduced glutathione and malondialdehyde contents of the three sweet potato varieties under flooding stress significantly increased because of pretreatment with 60 and 120 kg ha?1 of CaCl2. Moreover, pretreatment with 60 and 120 kg ha?1 CaCl2 enhanced the flooding tolerance of all three sweet potato varieties and mitigated the effects of flooding stress. However, pretreatment with 180 kg ha?1 CaCl2 markedly decreased some enzyme activities and antioxidant contents under a flooded condition. Calcium most likely played a role in the antioxidative system in the leaves of these three sweet potato varieties under flooding stress, as an optimum amount strengthened their oxidative systems.  相似文献   

5.
Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca2+ deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production.Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca2+ (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca2+ scavengers, Ca2+ transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed.Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca2+ scavenger (EGTA) and Ca2+ transport inhibitors (verapamil, LaCl3) and reduced by supplying Ca2+ along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O2 and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.  相似文献   

6.
Activities of enzymes decomposing hydrogen peroxide (H2O2) under long exposure to hardening low temperatures and the effect of Δ12-acyl-lipid desaturase on these processes were studied on potato (Solanum tuberosum L., cv. Desnitsa), which typically represents cold-tolerant plants. We compared nontransformed plants (control) and the line transformed with the construction carrying the target desA gene of the mentioned desaturase from cyanobacterium Synechocystis sp. PCC (desA-licBM3 plants). The plants were hardened at 5°C for six days under illumination of 50 μmol/(m2 s). The hardening was found to favor plant tolerance to the subsequent frost, and the desA-licBM3 plants exceed the controls in this property. Of the studied H2O2-scavenging enzymes, soluble type III peroxidases (guaiacol peroxidases) displayed the most activity, and type I peroxidase (ascorbate peroxidase) was the least active in the two potato lines over the hardening period. The activity of catalase increased twofold in the control and fourfold in the transformed plants in the first day of the hardening. However, the doubled catalase activity did not appear to compensate the H2O2 accumulation over this period. The recorded rise in catalase activity in the desA-licBM3 plants, together with the high activity of guaiacol peroxidases, favored lowering the hydrogen peroxide level in comparison with the initial values. For the first time, electrophoresis revealed two catalase isoforms, CAT1 and CAT2, in leaves of both potato lines. The significance of CAT1 was greater than that of CAT2 in the total catalase activity during the hardening period. It is concluded that, under the long-term cold hardening of potato plants, the content of hydrogen peroxide is determined by highly active guaiacol peroxidases and Class I catalase exerting energy-independent H2O2 decomposing. In this case, in the transformants that are rich in membrane lipids, where polyunsaturated fatty acids predominate, the activity of H2O2-scavenging enzymes increased significantly more than in the control, which is why the hardening of the transformants is more effective.  相似文献   

7.
Antioxidative responses and proline accumulation induced by exogenous H2O2 were investigated in the callus from halophyte Nitraria tangutorum Bobr. H2O2-treated callus exhibited higher H2O2 content than untreated callus. The activities of catalase (CAT) and peroxidase (POD) significantly increased in the callus treated with H2O2, while ascorbate peroxidase (APX) activity decreased. In addition, significantly enhanced proline content was observed in the callus treated by H2O2, which could be alleviated by H2O2 scavenger dimethylthiourea and calcium (Ca) chelator ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid (EGTA). Moreover, γ-glutamyl kinase (GK) activity increased in H2O2-treated callus, but proline dehydrogenase (PDH) activity decreased significantly, and the reduction was partly abolished by EGTA or Ca channel blocker verapamil. Assays using a scanning electron microscope showed significantly enhanced Ca content in H2O2-treated callus.  相似文献   

8.
为了研究CaCl2对NaCl胁迫下酸枣幼苗根、茎、叶的氮代谢影响,探索钙缓解幼苗NaCl胁迫的作用途径。该研究以酸枣幼苗为试验材料,检测不同浓度CaCl2(0、5、10、20 mmol/L)对NaCl(150 mmol/L)胁迫下幼苗叶片H2O2、O-·2含量,根、茎、叶中硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)活性及游离氨基酸、可溶性蛋白、硝态氮含量的影响,并采用主成分分析法筛选出评价CaCl2缓解NaCl胁迫效应的生理指标。结果表明:与NaCl胁迫相比,盐胁迫幼苗叶片的H2O2、O-·2积累量在5、10 mmol/L CaCl2处理下显著减少;GOGAT活性在5、10 mmol/L CaCl2处理下的植株根和茎内以及各浓度 CaCl2处理的叶内均显著升高, GS、NR活性在10、20 mmol/L CaCl2处理的根内和10 mmol/L CaCl2处理的茎内以及5、10、20 mmol/L CaCl2处理的叶内均显著升高;可溶性蛋白含量在5、10、20 mmol/L CaCl2处理的根、茎、叶内均显著升高,游离氨基酸含量在10、20 mmol/L CaCl2处理的根和茎内以及10 mmol/L CaCl2处理的叶内均显著升高,硝态氮含量在10 mmol/L CaCl2处理的根和茎内以及5、10、20 mmol/L CaCl2处理的叶内均显著升高。研究发现,150 mmol/L NaCl胁迫对酸枣幼苗造成明显过氧化伤害,抑制了体内氮代谢;外源CaCl2可通过促进幼苗根和茎内GS/GOGAT循环对NH4+的同化作用,提高叶片NR活性,加快硝态氮的转化速率,从而增强幼苗对NaCl胁迫的适应性,并以10 mmol/L CaCl2处理缓解效果最佳;游离氨基酸、GOGAT、NR可以作为CaCl2缓解幼苗NaCl胁迫伤害的评价指标。  相似文献   

9.
Photorespiration‐associated production of H2O2 accounts for the majority of total H2O2 in leaves of C3 plants and is mainly eliminated by catalases. In Arabidopsis, lack of CAT2, but not CAT1 or CAT3, results in growth suppression and a marked accumulation of H2O2 in leaves. To evaluate the contribution of individual catalase genes and their promoters to catalase function, we investigated the growth suppression and H2O2 accumulation phenotypes of Arabidopsis derivatives expressing catalase genes from heterologous CAT promoters in a cat2 mutant background. The expression of CAT2 from the CAT2 promoter restored the wild‐type phenotype in a cat2‐1 mutant, while CAT1 and CAT3 promoter‐driven expression of CAT2 did not. Ectopic expression of CAT3 from the CAT2 promoter also restored the normal phenotype, unlike that of CAT1 which required replacement of the CAT1 3′‐untranslated region (UTR) with that of CAT2. These results demonstrated that the photorespiratory role of CAT2 is determined mainly by the regulation of its promoter activity. The 3′‐UTR of CAT2 was vital for controlling CAT2 protein levels under photorespiratory conditions. Identification of component of heterotetramers catalase isoforms suggested that there is some functional redundancy between CAT2 and CAT1 and CAT3.  相似文献   

10.
Cadmium (Cd) is readily taken up by the roots of rice seedlings, leading to growth reduction. H2O2 is a constituent of oxidative metabolism and is itself a reactive oxygen species. In this study, the participation of H2O2 in CdCl2-inhibited growth of rice roots was investigated. CdCl2 treatment increased H2O2 production in rice roots. CdCl2 treatment had no effect on the activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase, but inhibited the activity of catalase (CAT) in rice roots. CdCl2-inhibited root growth and -increased H2O2 content were lessened in the presence of diphenyleneiodonium chloride, an inhibitor of H2O2 generating NADPH oxidase. However, this stimulation of root growth in CdCl2-treated seedlings is small (about 5%). Calcium (Ca) is important in many physiological processes in plants. Attempts were also made to determine whether the action of Ca on CdCl2-inhibited growth of rice roots is associated with H2O2. CaCl2 application reduced the production of H2O2, the decrease in CAT activity, and the inhibition of root growth caused by CdCl2. The effects of CaCl2 application could be reversed by exogenous H2O2. Our results indicate that the Cd causes a decline in CAT and to a lower extent a stimulation of NADPH oxidase in rice roots, with the subsequent generation of H2O2, an agent responsible for growth inhibition.  相似文献   

11.
Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), are among the important second messengers in abscisic acid (ABA) signaling in guard cells. In this study, to investigate specific roles of H2O2 in ABA signaling in guard cells, we examined the effects of mutations in the guard cell-expressed catalase (CAT) genes, CAT1 and CAT3, and of the CAT inhibitor 3-aminotriazole (AT) on stomatal movement. The cat3 and cat1 cat3 mutations significantly reduced CAT activities, leading to higher basal level of H2O2 in guard cells, when assessed by 2′,7′-dichlorodihydrofluorescein, whereas they did not affect stomatal aperture size under non-stressed condition. In addition, AT-treatment at concentrations that abolish CAT activities, showed trivial affect on stomatal aperture size, while basal H2O2 level increased extensively. In contrast, cat mutations and AT-treatment potentiated ABA-induced stomatal closure. Inducible ROS production triggered by ABA was observed in these mutants and wild type as well as in AT-treated guard cells. These results suggest that ABA-inducible cytosolic H2O2 elevation functions in ABA-induced stomatal closure, while constitutive increase of H2O2 do not cause stomatal closure.  相似文献   

12.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   

13.
The purpose of this study was to explore the mechanisms by which Alternaria alternata damages tobacco (Nicotiana tabacum) leaves. Treatment with A. alternata metabolic products enhanced senescence in leaves of different ages, as indicated by the significant decrease in chlorophyll, soluble protein, photosynthetic O2 evolution and catalase (CAT, EC 1.11.1.6) activity as well as an increase in H2O2 content. The induction of senescence by A. alternata metabolic products increased as the age of the leaves increased. A. alternata metabolic products greatly influenced the behavior of photosystem II (PSII) in the leaves: oxygen evolving complex (OEC) activity and electron transport from primary quinone electron acceptor of PS II (QA) to secondary quinone electron acceptor of PS II (QB) were both significantly inhibited. This inhibition also became more pronounced in older leaves. In vitro experiments revealed that, without the influence of natural senescence, the A. alternata metabolic products directly inhibited the activity of a commercial CAT solution and inhibited photosynthetic O2 evolution, which resulted in excess PSII excitation pressure and an overaccumulation of H2O2 in leaf segments. These results suggest that the significant declines in photosynthesis and CAT activity induced by the metabolic products of A. alternata were important contributors to the overaccumulation of reactive oxygen species (ROS), which accelerated senescence in tobacco leaves. The fact that the enhancement of senescence was getting more pronounced with the age of tobacco leaves might be related to the fact that older leaves already had higher H2O2 levels and less antioxidant activity as reflected in lower CAT activity.  相似文献   

14.
The role of H2O2 in salicylic acid (SA)-induced protection of rice leaves against subsequent Cd toxicity was investigated. SA pretreatment resulted in an increase in the contents of endogenous SA, as judged by the expression of OsWRKY45 (a SA responsive gene), and H2O2 in rice leaves. Diphenyleneiodonium (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented SA-increased H2O2 production, suggesting that NADPH oxidase is a H2O2-generating enzyme in SA-pretreated rice leaves. DPI and IMD also inhibited SA-increased activities of superoxide dismutase (SOD), ascorbate peroixdase (APX), and glutathione reductase (GR) activities, but had no effect on SA-increased catalase (CAT) activity. Moreover, SA-induced protection against subsequent Cd toxicity could also be prevented by DPI and IMD. The inhibitory effect of DPI and IMD on SA-induced protection against subsequent Cd toxicity could be reversed by exogenous H2O2. All these results suggested that SA-induced protection against subsequent Cd toxicity is mediated through H2O2. This conclusion is supported further by the observations that exogenous H2O2 application resulted in an increase in SOD, APX, and GR activities, but not CAT activity and a protection against subsequent Cd toxicity of rice leaves.  相似文献   

15.
The aim of the research was to estimate the sensitivity of tomato tissue and spore from necrotrophic isolate of B. cinerea on H2O2. The influence of exogenic H2O2 and B. cinerea on plant tissue and on the activity of peroxidases (PO), catalase (CAT) and superoxide dismutase (SOD) in apoplastic tomato leaves fraction were investigated. It was proved that 40 mM H2O2 damaged the cells of a host, and inhibited in vitro germination of B.cinerea spores. Complete inhibition of germination was observed after the use 100 mM H2O2. In the presence of spores H2O2 was decomposed to H2O and O2. Trace activity of catalase was observed in a solution of spores used for inoculation. Necrosis which appeared on the leaves after 40 mM H2O2 treatment resembled hypersensitive response. On the leaves pretreated at this concentration the development of infection was observed. The H2O2 concentration harmful for the tissues, stimulated the PO activity measured with NADH — responsible for generation of ·O 2 , as well as with syringaldazine (S) and ferulic acid (FA), substrates characteristics of forms lignifying and strengthening the cell wall. Clear increase in CAT activity, resulting from infection and early pretreatment with H2O2 was observed in apoplast. No effect on SOD activity was observed. A hypothesis may be put forward, that germinating spores produce enzymes which allow them to decompose H2O2 generated in apoplast, so there is little likelihood that B. cinerea can be directly inhibited by reactive oxygen forms (ROS) during initial stages of infection. Necrotic lesions resembling HR generated by exogenous H2O2 as well as induction of activity of apoplastic plant enzymes, particularly PO connected with strengthening and lignification of cell wall, were not sufficient factors to inhibit fungal expansion.  相似文献   

16.
The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.  相似文献   

17.
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O2.−) formation was inhibited at 3 or 21 h of exposure, but H2O2 production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.  相似文献   

18.
The effects of mercury (Hg), cadmium (Cd) and chromium (Cr) in concentrations ranging from 0.02 to 20 mg L?1 applied for 24 h were assessed in Lemna minor and Lemna gibba by measuring changes in protein concentration, ascorbic acid, phenolics, malondialdehyde (MDA), hydrogen peroxide (H2O2), the activity of guaiacol peroxidase (G-POX) and catalase (CAT). Ascorbic acid, phenolics, catalase and guaiacol peroxidase played a key role in the antioxidative response of L. gibba. Inadequate activity of antioxidant enzymes in the L. minor resulted in MDA and H2O2 accumulation. In both used species, Hg treatment decreased protein content and increased CAT and G-POX activity, but decreased MDA and H2O2 levels. Cadmium and chromium had opposite impacts on two used Lemna species on almost all observed parameters. Enhanced antioxidative responses of L. gibba to lower concentrations of Hg, Cd and Cr indicated greater abiotic stress tolerance than L. minor.  相似文献   

19.
20.
Effects of exogenous calcium chloride (CaCl2) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43 °C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (Pn), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (Fv/Fm). On the other hand, CaCl2 application improved Pn, AQY, and CE as well as Fv/Fm under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl2; glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl2. There was an obvious accumulation of H2O2 and O2 under high temperature, but CaCl2 application decreased the contents of H2O2 and O2 under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl2 pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl2 application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号