首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jasmonates control diverse plant developmental processes, such as seed germination, flower, fruit and seed development, senescence and tuberization in potato. To understand the role of methyl jasmonate (MeJA) in potato tuberization, the Arabidopsis JMT gene encoding jasmonic acid carboxyl methyltransferase was constitutively overexpressed in transgenic potato plants. Increases in tuber yield and size as well as in vitro tuberization frequency were observed in transgenic plants. These were correlated with JMT mRNA level––the higher expression level, the higher the tuber yield and size. The levels of jasmonic acid (JA), MeJA and tuberonic acid (TA) were also higher than those in control plants. Transgenic plants also exhibited higher expression of jasmonate-responsive genes such as those for allene oxide cyclase (AOC) and proteinase inhibitor II (PINII). These results indicate that JMT overexpression induces jasmonate biosynthesis genes and thus JA and TA pools in transgenic potatoes. This results in enhanced tuber yield and size in transgenic potato plants.  相似文献   

3.
4.
5.
Jasmonic acid(JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase(JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate(Me JA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene,Os JMT1, whose encoding protein was localized in the cytosol, we found that the recombinant Os JMT1 protein catalyzed JA to Me JA. Os JMT1 is up-regulated in response to infestation with the brown planthopper(BPH; Nilaparvata lugens). Plants in which Os JMT1 had been overexpressed(oeJMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased Me JA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine(JAIle). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs,probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H_2O_2 and Me JA in oe-JMT plants. These results indicate that Os JMT1,by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.  相似文献   

6.
7.
8.
Plants’ defenses against herbivores usually include both resistance and tolerance mechanisms. Their deployment has predominantly been studied in either single‐plant genotypes or multiple genotypes exposed to single herbivores. In natural situations, however, most plants are attacked by multiple herbivores. Therefore, aims of this study were to assess and compare the effects of single and multiple herbivores on plant resistance and tolerance traits, and the consequences for overall plant performance. For this, we exposed multiple genotypes of wild woodland strawberry (Fragaria vesca) to jasmonic acid (JA), to mimic chewing herbivory and induce the plants’ defense responses, and then introduced the generalist herbivore Spodoptera littoralis to feed on them. We found that woodland strawberry consistently showed resistance to S. littoralis herbivory, with no significant genetic variation between the genotypes. By contrast, the studied genotypes showed high variation in tolerance, suggesting evolutionary potential in this trait. Prior JA application did not alter these patterns, although it induced an even higher level of resistance in all tested genotypes. The study provides novel information that may be useful for breeders seeking to exploit tolerance and resistance mechanisms to improve strawberry crops’ viability and yields, particularly when multiple herbivores pose significant threats.  相似文献   

9.
* Accumulation of methyl jasmonate (MeJA) after herbivore attack in plants is associated with the induction of defenses that can benefit fitness, but are costly to express; effects often explored using exogenous application of jasmonates. * Here I explored the consequences of the overexpression of MeJA on seed production, tolerance to defoliation and competitive effect and response, using a genotype of Arabidopsis thaliana that overexpresses jasmonic acid carboxyl methyltransferase (JMT) and contains threefold higher levels of MeJA than wild-type plants. * Without competition, JMT plants produced 37-40% less total seed mass than vector controls or wild-type plants, and had reduced seed germination. Defoliation reduced height more strongly in wild-type than in JMT plants, but reduced total seed production equally. In a competition experiment, the presence of a neighbor reduced fitness more strongly in wild-type than in JMT plants, but JMT plants exhibited dampened opportunity costs and benefits of induction with jasmonic acid of itself or its neighbor. This may have related to the higher constitutive expression but reduced inducibility of jasmonate-mediated defenses, including trypsin inhibitors, exhibited by JMT plants. * In natural plant populations, overexpression of MeJA-mediated responses should be beneficial to resistance to herbivores, pathogens and competitors, but is directly costly to fitness and probably constrains plasticity in response to changing environmental conditions.  相似文献   

10.
Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vesca L.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype.  相似文献   

11.
12.
Microsatellite or simple sequence repeat markers derived from expressed sequence tags (ESTs) provide genetic markers within potentially functional genes, which could be very useful for breeding programs. To date, the development of microsatellite markers in the genus Fragaria has focused mainly on Fragaria vesca. However, most of the interests of breeding programs relate to specific characteristics of cultivated strawberry. Here, we describe a set of 10 EST‐derived microsatellites from Fragaria × ananassa. These markers showed high levels of polymorphism within strawberry cultivars and among different Fragaria species, indicating their potential for genetic studies not only on strawberry but also in other species within the genus.  相似文献   

13.
Jasmonic acid (JA) is involved in plant development and the defense response. Transgenic overexpression of the Arabidopsis (Arabidopsis thaliana) jasmonic acid carboxyl methyltransferase gene (AtJMT) linked to the Ubi1 promoter increased levels of methyl jasmonate (MeJA) by 6-fold in young panicles. Grain yield was greatly reduced in Ubi1:AtJMT plants due to a lower numbers of spikelets and lower filling rates than were observed for nontransgenic (NT) controls. Ubi1:AtJMT plants had altered numbers of spikelet organs, including the lemma/palea, lodicule, anther, and pistil. The loss of grain yield and alteration in spikelet organ numbers were reproduced by treating NT plants with exogenous MeJA, indicating that increased levels of MeJA in Ubi1:AtJMT panicles inhibited spikelet development. Interestingly, MeJA levels were increased by 19-fold in young NT panicles upon exposure to drought conditions, resulting in a loss of grain yield that was similar to that observed in Ubi1:AtJMT plants. Levels of abscisic acid (ABA) were increased by 1.9- and 1.4-fold in Ubi1:AtJMT and drought-treated NT panicles, respectively. The ABA increase in Ubi1:AtJMT panicles grown in nondrought conditions suggests that MeJA, rather than drought stress, induces ABA biosynthesis under drought conditions. Using microarray and quantitative polymerase chain reaction analyses, we identified seven genes that were regulated in both Ubi1:AtJMT and drought-treated NT panicles. Two genes, OsJMT1 and OsSDR (for short-chain alcohol dehydrogenase), are involved in MeJA and ABA biosynthesis, respectively, in rice (Oryza sativa). Overall, our results suggest that plants produce MeJA during drought stress, which in turn stimulates the production of ABA, together leading to a loss of grain yield.  相似文献   

14.
We present 37 microsatellite primer pairs developed from a cDNA library of Fragaria xananassa Duch. cv. Strawberry Festival. Polymorphism was high and the number of presumptive alleles of 13 expressed sequence tag–simple sequence repeats (EST–SSRs) in 70 strawberry cultivars ranged from five to 32 per primer pairs, averaging 16.1. Cross‐species amplification was also high and ranged from 89% in Fragaria vesca L. to 100% in the progenitor species of octoploid strawberry, Fragaria chiloensis (L.) Duch. and Fragaria virginiana Duch.  相似文献   

15.
In the annual long-day plant Arabidopsis thaliana, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv TERMINAL FLOWER1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv FLOWERING LOCUS T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.  相似文献   

16.
As part of a program to develop forward and reverse genetics platforms in the diploid strawberry [Fragaria vesca L.; (2n = 2x = 14)] we have generated insertional mutant lines by T-DNA mutagenesis using pCAMBIA vectors. To characterize the T-DNA insertion sites of a population of 108 unique single copy mutants, we utilized thermal asymmetric interlaced PCR (hiTAIL-PCR) to amplify the flanking region surrounding either the left or right border of the T-DNA. Bioinformatics analysis of flanking sequences revealed little preference for insertion site with regard to G/C content; left borders tended to retain more of the plasmid backbone than right borders. Primers were developed from F. vesca flanking sequences to attempt to amplify products from both parents of the reference F. vesca 815 × F. bucharica 601 mapping population. Polymorphism occurred as: presence/absence of an amplification product for 16 primer pairs and different size products for 12 primer pairs, For 46 mutants, where polymorphism was not found by PCR, the amplification products were sequenced to reveal SNP polymorphism. A cleaved amplified polymorphic sequence/derived cleaved amplified polymorphism sequence (CAPS/dCAPS) strategy was then applied to find restriction endonuclease recognition sites in one of the parental lines to map the SNP position of 74 of the T-DNA insertion lines. BLAST search of flanking regions against GenBank revealed that 46 of 108 flanking sequences were close to presumed strawberry genes related to annotated genes from other plants.  相似文献   

17.
薛仁镐  张标 《遗传学报》2007,34(4):339-346
茉莉酸甲酯是一种调节植物形态发生、诱导防御相关基因的植物信号转导分子。为了解内源茉莉酸甲酯在植物发育中的作用,将编码茉莉酸甲基转移酶的NTR1基因与CaMV 35S启动子连接并导入大豆植株。PCR及Northern杂交结果表明,NTR1基因稳定整合在大豆基因组并得到过量表达。与野生型植株相比,转基因大豆叶片与根的形态发生了显著的变化。大部分转基因大豆叶片变得细长,初生根生长受到抑制而侧根的生长却受到促进。定量分析结果表明,转基因大豆植株叶片中茉莉酸甲酯的含量比对照高出 2~2.5 倍。这些结果表明,内源茉莉酸甲酯的积累参与了大豆形态发生的调控。  相似文献   

18.
19.
This study reports the development and characterization of 10 polymorphic microsatellite primer pairs in wild strawberry (Fragaria vesca). The primers were designed from a genomic library enriched for di‐, tri‐ and tetranucleotide repeats from F. vesca‘Reugen’. They showed single locus polymorphism in a set of nine F. vesca accessions; two to six alleles were detected per locus. The level of polymorphism in F. vesca was surprisingly low, although three pairs of primers were sufficient to distinguish between most accessions.  相似文献   

20.
The genus Fragaria (Rosaceae) contains 24 plant species, including hybrid species such as the octoploid garden strawberry (F. × ananassa). Natural hybridization between Fragaria species has repeatedly been reported, and the potential future cultivation of genetically modified strawberries has made the study of hybridization potential between F. × ananassa and its wild relatives increasingly important. In Europe, F. × ananassa is the only octoploid species present, and the most likely candidate for hybridization is the common diploid woodland strawberry (F. vesca). To date, it is unknown whether pollinator spectra of the two Fragaria species overlap and thus might promote interspecific gene flow. We carried out a survey of flower visitors in northwestern Switzerland to identify major flower visitors of F. vesca and F. × ananassa. This survey indicated that wild bees are the most important shared flower visitors of F. × ananassa and F. vesca. Therefore, we studied flower choice behavior of the common wild bee Osmia bicornis in a greenhouse experiment. Osmia bicornis did not discriminate between F. × ananassa and F. vesca flowers. We conclude that wild bees are important shared flower visitors of both F. × ananassa and F. vesca and are potential vectors for gene flow between cultivated and wild strawberries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号