首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 6 毫秒
1.
Application of transformation and other biotechnological tools in avocado (Persea americana Mill.) is hampered by difficulties in obtaining mature somatic embryos capable of germination at an acceptable rate. In this work, we evaluated the effect of different compounds affecting medium water relations on maturation of avocado somatic embryos. Culture media were characterized with respect to gel strength, water potential and osmotic potential. Improved production of mature somatic embryos was achieved with gelling agent concentrations higher than those considered standard. The osmotic agents such as sorbitol and PEG did not have positive effects on embryo maturation. The number of w-o mature somatic embryos per culture was positively correlated with medium gel strength. Gel strength was significantly affected by gelling agent type as well as by gelling agent and PEG concentration. Medium water potential was influenced by sorbitol concentration; incorporation of PEG to a culture medium did not affect medium water potential. The highest maturation results were achieved on a medium gelled with 10 g l−1 agar. Moreover, these somatic embryos had improved germination rates. These results corroborate the role of water restriction as a key factor controlling maturation of somatic embryos.  相似文献   

2.
3.
An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1−l). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1−1) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N6-benzyladenine (BAP, 0.75 mg 1−l) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1−l) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.  相似文献   

4.
Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca2 +/H+ antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca2 + ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca2 + ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet.  相似文献   

5.
Mackerels of the genus Scomber are commercially important species, but their taxonomic status is still controversial. Although previous phylogenetic data support the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as separate species, it is only based on the analysis of partial mitochondrial and nuclear DNA sequences. In an attempt to shed light on this relevant issue, we have determined the complete mitochondrial DNA sequence of S. colias, S. japonicus, and Scomber australasicus. The total length of the mitogenomes was 16,568 bp for S. colias and 16,570 bp for both S. japonicus and S. australasicus. All mitogenomes had a gene content (13 protein-coding, 2 rRNAs, and 22 tRNAs) and organization similar to that observed in Scomber scombrus and most other vertebrates. The major noncoding region (control region) ranged between 865 and 866 bp in length and showed the typical conserved blocks. Phylogenetic analyses revealed a monophyletic origin of Scomber species with regard to other scombrid fish. The major finding of this study is that S. colias and S. japonicus were significantly grouped in distinct lineages within Scomber cluster, which phylogenetically constitutes evidence that they may be considered as separate species. Additionally, molecular data here presented provide a useful tool for evolutionary as well as population genetic studies.  相似文献   

6.
Adhatoda vasica Nees, belonging to family Acanthaceae, is a well-known medicinal plant. It is endorsed for its pyrroloquinazoline alkaloids and its derivatives, such as vasicine and vasicinone. Germinating A. vasica seeds is a tedious task; on that account, vegetative propagation is the preferred method for its multiplication. For rapid and large-scale multiplication, germplasm conservation as well as secondary metabolites production, in vitro culture of A. vasica was preferred over conventional propagation by several researchers; however, some major applications of this tissue culture technique are still awaiting to undergo extensive research. The present review, for the first time, illustrates all the major achievements associated with in vitro regeneration of A. vasica, reported till date and highlights the future prospects.  相似文献   

7.
8.
Shiguo Chen 《BBA》2007,1767(4):306-318
Tenuazonic acid (TeA) is a natural phytotoxin produced by Alternaria alternata, the causal agent of brown leaf spot disease of Eupatorium adenophorum. Results from chlorophyll fluorescence revealed TeA can block electron flow from QA to QB at photosystem II acceptor side. Based on studies with D1-mutants of Chlamydomonas reinhardtii, the No. 256 amino acid plays a key role in TeA binding to the QB-niche. The results of competitive replacement with [14C]atrazine combined with JIP-test and D1-mutant showed that TeA should be considered as a new type of photosystem II inhibitor because it has a different binding behavior within QB-niche from other known photosystem II inhibitors. Bioassay of TeA and its analogues indicated 3-acyl-5-alkyltetramic and even tetramic acid compounds may represent a new structural framework for photosynthetic inhibitors.  相似文献   

9.
Y-family DNA polymerases (DNAPs) are often required in cells to synthesize past DNA-containing lesions, such as [+ ta]-B[a]P-N2-dG, which is the major adduct of the potent mutagen/carcinogen benzo[a]pyrene. The current model for the non-mutagenic pathway in Escherichia coli involves DNAP IV inserting deoxycytidine triphosphate opposite [+ ta]-B[a]P-N2-dG and DNAP V doing the next step(s), extension. We are investigating what structural differences in these related Y-family DNAPs dictate their functional differences. X-ray structures of Y-family DNAPs reveal a number of interesting features in the vicinity of the active site, including (1) the “roof-amino acid” (roof-aa), which is the amino acid that lies above the nucleobase of the deoxynucleotide triphosphate (dNTP) and is expected to play a role in dNTP insertion efficiency, and (2) a cluster of three amino acids, including the roof-aa, which anchors the base of a loop, whose detailed structure dictates several important mechanistic functions. Since no X-ray structures existed for UmuC (the polymerase subunit of DNAP V) or DNAP IV, we previously built molecular models. Herein, we test the accuracy of our UmuC(V) model by investigating how amino acid replacement mutants affect lesion bypass efficiency. A ssM13 vector containing a single [+ ta]-B[a]P-N2-dG is transformed into E. coli carrying mutations at I38, which is the roof-aa in our UmuC(V) model, and output progeny vector yield is monitored as a measure of the relative efficiency of the non-mutagenic pathway. Findings show that (1) the roof-aa is almost certainly I38, whose β-carbon branching R-group is key for optimal activity, and (2) I38/A39/V29 form a hydrophobic cluster that anchors an important mechanistic loop, aa29-39. In addition, bypass efficiency is significantly lower both for the I38A mutation of the roof-aa and for the adjacent A39T mutation; however, the I38A/A39T double mutant is almost as active as wild-type UmuC(V), which probably reflects the following. Y-family DNAPs fall into several classes with respect to the [roof-aa/next amino acid]: one class has [isoleucine/alanine] and includes UmuC(V) and DNAP η (from many species), while the second class has [alanine (or serine)/threonine] and includes DNAP IV, DNAP κ (from many species), and Dpo4. Thus, the high activity of the I38A/A39T double mutant probably arises because UmuC(V) was converted from the V/η class to the IV/κ class with respect to the [roof-aa/next amino acid]. Structural and mechanistic aspects of these two classes of Y-family DNAPs are discussed.  相似文献   

10.
11.
Merwilla plumbea (Lindl.) Speta is an important medicinal plant widely used in traditional medicine. We evaluated the effect of five cytokinins [benzyladenine (BA), 2-isopentenyladenine (2iP), meta-topolin (mT), meta-topolin riboside (mTR), and meta-methoxy-9-tetrahydropyran-2-yl-topolin (MemTTHP)] on the level of phenolic acids and antioxidant activity of M. plumbea during the tissue culture and acclimatization stages. Two cytokinins (mT and mTR) significantly improved the antioxidant activity of tissue culture plantlets while the control plantlets were better after acclimatization. Using UPLC–MS/MS, the levels of hydroxybenzoic and hydroxycinnamic acid derivatives (phenolic acids) varied significantly during tissue culture and acclimatization, depending on the cytokinin and plant part analyzed. Vanillic acid (24.9 μg g−1) detected in underground parts of tissue culture plants supplemented with BA was the most abundant phenolic acid detected. The current findings indicate that the phytochemicals together with the bioactivity during in vitro propagation of M. plumbea is influenced by the cytokinin type used and the stage of plant material collection.  相似文献   

12.
The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700+ and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP+-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 μmol photons m−2 s−1 did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to ‘close’ all reaction centers with a strong light pulse. This supports the hypothesis that in addition to QA a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the QB-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.  相似文献   

13.
Stable transformation of Mesembryanthemum crystallinum L. (common ice plant) with a green fluorescent protein (GFP) construct targeted to the endoplasmic reticulum was obtained. Seven and fourteen days after germination seedlings were infected with Agrobacterium rhizogenes strain ARqua1 either by direct coating of the cut radicles with bacteria growing on solid medium or by immersion of the cut surface in bacterial suspension at different optical densities. Both methods of infection resulted in production of GFP-positive roots with a frequency ranging from 6 to 20% according to the age of the explants and the application procedure. The green fluorescing roots displayed the typical hairy root phenotype and were easily maintained in liquid medium without growth regulators for over 2 years. Stable expression of the transgene in the roots was confirmed by polymerase chain reaction (PCR), immunoblotting and the capacity of roots to grow and produce callus on kanamycin-enriched medium. Nineteen endogenous cytokinins were determined in transgenic and non-transformed roots. The results revealed significantly lower levels of the free bases of isopentenyladenine, dihydrozeatin, cis- and trans-zeatin, as well as a conspicuous decline in concentrations of the corresponding nucleosides and most nucleotides in transgenic roots compared to the wild type. Comparison of the cytokinin profiles in transgenic and non-transformed roots suggested that transformation by A. rhizogenes disturbed cytokinin metabolism during the early steps of biosynthesis. Calli obtained from transformed roots were GFP-positive and remained non-regenerative or displayed high rhizogenic potential depending on the auxin/cytokinin ratio in the medium. Calli and callus-derived roots showed a strong GFP signal for over 2 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号