首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the role of ethylene in nitric oxide (NO)-mediated protection by modulating ion homeostasis in Arabidopsis callus under salt stress was investigated. Results showed that the ethylene-insensitive mutant etr1-3 was more sensitive to salt stress than the wild type (WT). Under 100 mM NaCl, etr1-3 callus displayed a greater electrolyte leakage and Na+/K+ ratio but a lower plasma membrane (PM) H+-ATPase activity compared to WT callus. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC, an ethylene precursor) or sodium nitroprusside (SNP, a NO donor) alleviated NaCl-induced injury by maintaining a lower Na+/K+ ratio and an increased PM H+-ATPase activity in WT callus but not in etr1-3 callus. The SNP actions in NaCl stress were attenuated by a specific NO scavenger or an ethylene biosynthesis inhibitor in WT callus. Under 100 mM NaCl, the NO accumulation and ethylene emission appeared at early time, and NO production greatly stimulated ethylene emission in WT callus. In addition, ethylene induced the expression of PM H+-ATPase genes under salt stress. The recovery experiment showed that NaCl-induced injury was reversible, as signaled by the similar recovery of Na+/K+ ratio and PM H+-ATPase activity in WT callus. Taken together, the results indicate that ethylene and NO cooperate in stimulating PM H+-ATPase activity to modulate ion homeostasis for salt tolerance, and ethylene may be a part of the downstream signal molecular in NO action.  相似文献   

2.
Nitraria tangutorum Bobr. is a typical halophyte with superior tolerance to salinity. However, little is known about its physiological adaptation mechanisms to the salt environment. In the present study, N. tangutorum seedlings were treated with different concentrations of NaCl (100, 200, 300 and 400 mmol L?1) combined with five levels of Ca2+ (0, 5, 10, 15 and 20 mmol L?1) to investigate the effects of salt stress and exogenous Ca2+ on Na+ compartmentalization and ion pump activities of tonoplast and plasma membrane (PM) in leaves. Na+ and Ca2+ treatments increased the fresh weight and dry weight of N. tangutorum seedlings. The absorption of Na+ in roots, stems and leaves was substantially increased with the increases of NaCl concentration, and Na+ was mainly accumulated in leaves. Exogenous Ca2+ reduced Na+ accumulation in roots but promoted Na+ accumulation in leaves. The absorption and transportation of Ca2+ in N. tangutorum seedlings were inhibited under NaCl treatments. Exogenous Ca2+ promoted Ca2+ accumulation in the plant. Na+ contents in apoplast and symplast of leaves were also significantly increased, and symplast was the main part of Na+ intracellular compartmentalization. The tonoplast H+-ATPase and H+-PPase activities were significantly promoted under salt stress (NaCl concentrations ≤300 mmol L?1). PM H+-ATPase activities gradually increased under salt stress (NaCl concentrations ≤200 mmol L?1) followed by decreases with NaCl concentration increasing. The tonoplast H+-ATPase, H+-PPase and PM H+-ATPase activities increased first with the increasing exogenous Ca2+ concentration, reached the maximums at 15 mmol L?1 Ca2+, and then decreased. The tonoplast and PM Ca2+-ATPase activities showed increasing trends with the increases of NaCl and Ca2+ concentration. These results suggested that certain concentrations of exogenous Ca2+ effectively enhanced ion pump activities of tonoplast and PM as well as promoted the intracellular Na+ compartmentalization to improve the salt tolerance of N. tangutorum.  相似文献   

3.
4.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

5.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

6.
To gain a better understanding of the relations between root elongation and the amount of Ca2+ bound to the plasma membrane (PM), melon plants were grown in aerated solutions containing different concentrations of CaCl2 with various concentrations of NaCl or mannitol. With increasing external concentrations of NaCl or mannitol, root elongation was suppressed. Addition of CaCl2 to the external medium alleviated the inhibition of root elongation by high concentrations of Na+, but not of mannitol. Root elongation in media containing high concentrations of NaCl was correlated with the computed amount of Ca2+ bound to the PM. A model describing relative root elongation (RRL) under salt stress was developed. This model takes into account the osmotic potential in the growing solution (based on the mannitol experiments) and the computed amount of Ca2+ bound to the PM. Calcium binding was calculated by applying a Gouy-Chapman-Stern sorption model using the same parameters deduced from studies on PM vesicles. This model combines electrostatic theory with competitive binding at the PM surface. The model for RRL allowed the computation of a critical value for the fraction of negative sites binding Ca2+ on the PM needed for nearly optimal (95%) root elongation. Any decrease below this critical value decreased the RRL. Root elongation of Honey Dew (salt-resistant cv.) was greater than that of Eshkolit Ha'Amaqim (salt-sensitive cv.) under NaCl stress. Nearly optimal root growth for Honey Dew and Eshkolit Ha'Amaqim occurred when 40% and 51% of total membrane charged sites were bound by Ca2+, respectively. The effect of osmotic potential on the suppression of root elongation was the same for the two cultivars. To our knowledge, this report provides the first fully quantitative estimates of PM-bound Ca2+ relative to salt toxicity.  相似文献   

7.
ICa-gated Ca2+ release (CICR) from the cardiac SR is the main mechanism mediating the rise of cytosolic Ca2+, but the extent to which mitochondria contribute to the overall Ca2+ signaling remains controversial. To examine the possible role of mitochondria in Ca2+ signaling, we developed a low affinity mitochondrial Ca2+ probe, mitycam-E31Q (300–500 MOI, 48–72 h) and used it in conjunction with Fura-2AM to obtain simultaneous TIRF images of mitochondrial and cytosolic Ca2+ in cultured neonatal rat cardiomyocytes. Mitycam-E31Q staining of adult feline cardiomyocytes showed the typical mitochondrial longitudinal fluorescent bandings similar to that of TMRE staining, while neonatal rat cardiomyocytes had a disorganized tubular or punctuate appearance. Caffeine puffs produced rapid increases in cytosolic Ca2+ while simultaneously measured global mitycam-E31Q signals decreased more slowly (increased mitochondrial Ca2+) before decaying to baseline levels. Similar, but oscillating mitycam-E31Q signals were seen in spontaneously pacing cells. Withdrawal of Na+ increased global cytosolic and mitochondrial Ca2+ signals in one population of mitochondria, but unexpectedly decreased it (release of Ca2+) in another mitochondrial population. Such mitochondrial Ca2+ release signals were seen not only during long lasting Na+ withdrawal, but also when Ca2+ loaded cells were exposed to caffeine-puffs, and during spontaneous rhythmic beating. Thus, mitochondrial Ca2+ transients appear to activate with a delay following the cytosolic rise of Ca2+ and show diversity in subpopulations of mitochondria that could contribute to the plasticity of mitochondrial Ca2+ signaling.  相似文献   

8.
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.  相似文献   

9.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

10.
The presence of Ca2+ ions in solution is vital for root growth. The plasma membrane is one of the first sites where competition between Ca2+ and other ions occurs. We studied the competition between Ca2+ and Na+ or Mg2+ for sorption sites on the plasma membrane of melon root cells.Sorption of 45Ca2+ to right-side-out PM vesicles of melon (Cucumis melo L.) roots (prepared by aqueous two-phase partitioning) was studied at various Ca2+ concentrations, in the presence of increasing concentrations of Na+ or Mg2+ chlorides. Experimentally determined amounts of Ca2+ sorbed to the plasma membrane vesicles agreed fairly well with those calculated from a competitive sorption model. The best fit of the model to the experimental data was obtained for an average surface area of 370 Å2 per charge, and binding coefficients for Na+, Mg2+ and Ca2+ of 0.8, 9 and 50 m -1, respectively.Our results suggest that nonphospholipid components in the plasma membrane contribute significantly to Ca2+ binding. The high affinity of Ca2+ binding to the plasma membrane found in this study might explain the specific role of Ca2+ in relieving salt stress in plant roots.This research was supported by the GIFRID German-Israel fund for research and international development.  相似文献   

11.
Ion-selective microelectrodes are a powerful tool in studying adaptive responses of plant cells and tissues to various abiotic stresses. However, application of this technique in Na+ flux measurements was limited due to poor selectivity for Na+ ions of commercially available Na+ cocktails. Often, these cocktails cannot discriminate between Na+ and other interfering ions such as K+ and Ca2+, leading to inaccurate measurements of Na+ concentration and, consequently, inaccurate Na+ flux calculations. To overcome this problem, three Na+-selective cocktail mixtures were prepared using tetramethoxyethyl ester derivative of p-t-butyl calix[4]arene. These cocktail mixtures were compared with commercially available ETH 227-based Na+ cocktail for selectivity for Na+ ions over other ions (particularly K+ and Ca2+). Among the three calixarene-based Na+ cocktails tested, cocktail 2 [in % w/w: Na+ ionophore (4-tert-butylcalix[4]arene-tetra acetic acid tetraethyl ester) 3.5, the plasticizer (2-nitrophenyl octyl ether) 95.9 and lipophilic anion (potassium tetrakis (4-chlorophenyl) borate) 0.6] showed the best selectivity for Na+ ions over K+ and Ca2+ ions and was highly stable over time (up to 10 h). Na+ flux measurements under a wide range of NaCl concentrations (25-150 mM) using Na+ cocktail 2 established a clear dose-response relationship between severity of salt stress and magnitude of Na+ influx at the distal elongation and mature zones of Arabidopsis thaliana roots. Furthermore, Na+ cocktail 2 was compared with commercially available ETH 227-based Na+ cocktail by measuring Na+ fluxes at the two Arabidopsis root zones in response to 100 mM NaCl treatment. With calixarene-based Na+ cocktail 2, a large decreasing Na+ influx (0-15 min) followed by small Na+ influx (15-45 min) was measured, whereas with ETH-based Na+ cocktail Na+ influx was short-lived (1-3 min) and was followed by Na+ efflux (3-45 min) that might have been due to K+ and Ca2+ efflux measured together with Na+ influx. In conclusion, Na+-selective calixarene-based microelectrodes have excellent potential to be used in real-time Na+ flux measurements in plants.  相似文献   

12.
In plant cells, Ca2+ is required for both structural and biophysical roles. In addition, changes in cytosolic Ca2+ concentration ([Ca2+]cyt) orchestrate responses to developmental and environmental signals. In many instances, [Ca2+]cyt is increased by Ca2+ influx across the plasma membrane through ion channels. Although the electrophysiological and biochemical characteristics of Ca2+-permeable channels in the plasma membrane of plant cells are well known, genes encoding putative Ca2+-permeable channels have only recently been identified. By comparing the tissue expression patterns and electrophysiology of Ca2+-permeable channels in the plasma membrane of root cells with those of genes encoding candidate plasma membrane Ca2+ channels, the genetic counterparts of specific Ca2+-permeable channels can be deduced. Sequence homologies and the physiology of transgenic antisense plants suggest that the Arabidopsis AtTPC1 gene encodes a depolarisation-activated Ca2+ channel. Members of the annexin gene family are likely to encode hyperpolarisation-activated Ca2+ channels, based on their corresponding occurrence in secretory or elongating root cells, their inhibition by La3+ and nifedipine, and their increased activity as [Ca2+]cyt is raised. Based on their electrophysiology and tissue expression patterns, AtSKOR encodes a depolarisation-activated outward-rectifying (Ca2+-permeable) K+ channel (KORC) in stelar cells and AtGORK is likely to encode a KORC in the plasma membrane of other Arabidopsis root cells. Two candidate gene families, of cyclic-nucleotide gated channels (CNGC) and ionotropic glutamate receptor (GLR) homologues, are proposed as the genetic correlates of voltage-independent cation (VIC) channels.  相似文献   

13.
Self-grafted and pumpkin rootstock-grafted cucumber plants were subjected to the following four treatments: 1) aerated nutrient solution alone (control), 2) nutrient solution with 10 mM Ca(NO3)2 (Ca), 3) nutrient solution with 90 mM NaCl (NaCl), and 4) nutrient solution with 90 mM NaCl + 10 mM Ca(NO3)2 (NaCl+Ca). The NaCl treatment decreased the plant dry mass and content of Ca2+ and K+ but increased the Na+ content in roots and shoots. Smaller changes were observed in pumpkin rootstock-grafted plants. Supplementary Ca(NO3)2 ameliorated the negative effects of NaCl on plant dry mass, relative growth rate (RGR), as well as Ca2+, K+, and Na+ content especially for pumpkin rootstock-grafted plants. Supplementary Ca(NO3)2 distinctly stimulated the plasma membrane (PM) H+-ATPase activity which supplies the energy to remove excess Na+ from the cells. The expressions of gene encoding PM H+-ATPases (PMA) and gene encoding a PM Na+/H+ antiporter (SOS1) were up-regulated when Ca(NO3)2 was applied. The pumpkin rootstock-grafted plants had higher PM H+-ATPase activity as well as higher PMA and SOS1 expressions than the self-grafted plants under NaCl + Ca treatment. Therefore, the addition of Ca2+ in combination with pumpkin rootstock grafting is a powerful way to increase cucumber salt tolerance.  相似文献   

14.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

15.
We present a stochastic computational model to study the mechanism of signaling between a source and a target ionic transporter, both localized on the plasma membrane (PM). In general this requires a nanometer-scale cytoplasmic space, or nanodomain, between the PM and a peripheral organelle to reflect ions back towards the PM. Specifically we investigate the coupling between Na+ entry via the transient receptor potential canonical channel 6 (TRPC6) and the Na+/Ca2+ exchanger (NCX), a process which is essential for reloading the sarcoplasmic reticulum (SR) via the sarco/endoplasmic reticulum Ca2+ATPase (SERCA) and maintaining Ca2+ oscillations in activated vascular smooth muscle. Having previously modeled the flow of Ca2+ between reverse NCX and SERCA during SR refilling, this quantitative approach now allows us to model the upstream linkage of Na+ entry through TRPC6 to reversal of NCX. We have implemented a random walk (RW) Monte Carlo (MC) model with simulations mimicking a diffusion process originating at the TRPC6 within PM-SR junctions. The model calculates the average Na+ in the nanospace and also produces profiles as a function of distance from the source. Our results highlight the necessity of a strategic juxtaposition of the relevant ion translocators as well as other physical structures within the nanospaces to permit adequate Na+ build-up to initiate NCX reversal and Ca2+ influx to refill the SR.  相似文献   

16.
Sodium displaces Ca2+ from membranes (GR Cramer, A Läuchli, VS Polito Plant Physiol 1985 79: 207-211) and this can be related to the (Ca2+)/(Na+)2 activity ratio in the external solution (GR Cramer, A Läuchli 1986 J Exp Bot 37: 321-330). Supplemental Ca2+ is known to mitigate the adverse effects of salinity on plant growth. In this report we investigated the effects of NaCl (0-250 millimolar) and Ca2+ (0.4 and 10 millimolar) on the ion activities in solution and on root growth of cotton (Gossypium hirsutum L.). Ion activities were analyzed using the computer program, GEOCHEM. Most ion activities in a 0.1 modified Hoagland solution were significantly reduced by both NaCl and supplemental Ca2+. Ion-pair formation and precipitation were significant for some ions, especially phosphate. Root growth of 6-day-old seedlings was stimulated by low NaCl concentrations (25 millimolar). At higher NaCl concentrations, root growth was inhibited; the concentration at which this occurred depended on the Ca2+ concentration and the growth index used. Supplemental Ca2+ mitigated the inhibition of root growth caused by NaCl. There was a curvilinear relationship between root growth and the (Ca2+)/(Na+)2 ratio in the nutrient solution. The mechanisms by which Na+ and Ca2+ may affect root growth are discussed.  相似文献   

17.
18.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

19.
20.
Evelin H  Giri B  Kapoor R 《Mycorrhiza》2012,22(3):203-217
The study aimed to investigate the effects of an AM fungus (Glomus intraradices Schenck and Smith) on mineral acquisition in fenugreek (Trigonella foenum-graecum) plants under different levels of salinity. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl salinity (0, 50, 100, and 200 mM NaCl). Plant tissues were analyzed for different mineral nutrients. Leaf senescence (chlorophyll concentration and membrane permeability) and lipid peroxidation were also assessed. Under salt stress, M plants showed better growth, lower leaf senescence, and decreased lipid peroxidation as compared to NM plants. Salt stress adversely affected root nodulation and uptake of NPK. This effect was attenuated in mycorrhizal plants. Presence of the AM fungus prevented excess uptake of Na+ with increase in NaCl in the soil. It also imparted a regulatory effect on the translocation of Na+ ions to shoots thereby maintaining lower Na+ shoot:root ratios as compared to NM plants. Mycorrhizal colonization helped the host plant to overcome Na+-induced Ca2+ and K+ deficiencies. M plants maintained favorable K+:Na+, Ca2+:Na+, and Ca2+:Mg2+ ratios in their tissues. Concentrations of Cu, Fe, and Zn2+ decreased with increase in intensity of salinity stress. However, at each NaCl level, M plants had higher concentration of Cu, Fe, Mn2+, and Zn2+ as compared to NM plants. M plants showed reduced electrolyte leakage in leaves as compared to NM plants. The study suggests that AM fungi contribute to alleviation of salt stress by mitigation of NaCl-induced ionic imbalance thus maintaining a favorable nutrient profile and integrity of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号