首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In photosynthetic chains, the kinetics of fluorescence yield depends on the photochemical rates at the level of both Photosystem I and II and thus on the absorption cross section of the photosynthetic units as well as on the coupling between light harvesting complexes and photosynthetic traps. A new set-up is described which, at variance with the commonly used set-ups, uses of a weakly absorbed light source (light-emitting diodes with maximum output at 520 nm) to excite the photosynthetic electron chain and probe the resulting fluorescence yield changes and their time course. This approach optimizes the homogeneity of the exciting light throughout the leaf and we show that this homogeneity narrows the distribution of the photochemical rates. Although the exciting light is weakly absorbed, the possibility to tune the intensity of the light emitting diodes allows one to reach photochemical rates ranging from 104 s− 1 to 0.25 s− 1 rendering experimentally accessible different functional regimes. The variations of the fluorescence yield induced by the photosynthetic activity are qualitatively and quantitatively discussed. When illuminating dark-adapted leaves by a weak light, the kinetics of fluorescence changes displays a pronounced plateau which precedes the fluorescence increase reflecting the full reduction of the plastoquinone pool. We ascribe this plateau to the time delay needed to reduce the photosystem I electron acceptors.  相似文献   

2.
The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψπ) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψπ during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψπ,100) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was −0.7 MPa for G. urceolata and −0.8 MPa for G. procumbens. In vivo concentrations of anthocyanin (3–10 mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψπ,100 in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψπ,100. We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an osmoprotectant role.  相似文献   

3.
Nikolaos E. Ioannidis 《BBA》2006,1757(7):821-828
Putrescine is a main polyamine found in animals, plants and microbes, but the molecular mechanism underlying its mode of action is still obscure. In vivo chlorophyll a fluorescence in tobacco leaf discs indicated that putrescine treatment affects the energization of the thylakoid membrane. Molecular dissection of the electron transport chain by biophysical and biochemical means provided new evidence that putrescine can play an important bioenergetic role acting as a cation and as a permeant natural buffer. We demonstrate that putrescine increases chemiosmotic ATP synthesis more than 70%. Also a regulation of the energy outcome by small changes in putrescine pool under the same photonic environment (i.e., photosynthetically active radiation) is shown. The proposed molecular mechanism has at least four conserved features: (i) presence of a membrane barrier, (ii) a proton-driven ATPase, (iii) a ΔpH and (iv) a pool of putrescine.  相似文献   

4.
Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na+ and Cl in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψw) decreased from an average value of approximately −1.0 MPa, measured on control plants and S10, to −1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g−1 fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.  相似文献   

5.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   

6.
Nikolaos E. Ioannidis 《BBA》2007,1767(12):1372-1382
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 μM increase FV as efficiently as 100 μM of spermidine or 1000 μM of putrescine or 1000 μM of Mg2+. It is also demonstrated that the increase in FV derives mainly from the contribution of PSIIα centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

7.
Soil cadmium (Cd) contamination is becoming a matter of great global concern. The identification of plants differentially sensitive to Cd excess is of interest for the selection of genotype adaptive to grow and develop in polluted areas and capable of ameliorating or reducing the negative environmental effects of this toxic metal. The two poplar clones I-214 (Populus × canadensis) and Eridano (Populus deltoides × maximowiczii) are, respectively, tolerant and sensitive to ozone (O3) exposure. Because stress tolerance is mediated by an array of overlapping defence mechanisms, we tested the hypothesis that these two clones differently sensitive to O3 stress factor also exhibit different tolerance to Cd. With this purpose, an outdoor pot experiment was designed to study the responses of I-214 and Eridano to the distribution of different Cd solutions enriched with CdCl2 (0, 50 and 150 μM) for 35 days. Changes in leaf area, biomass allocation and Cd uptake, photosynthesis, chlorophyll fluorescence, leaf concentration of nutrients and pigments, hydrogen peroxide (H2O2) and nitric oxide (NO) production and thiol compounds were investigated. The two poplar clones showed similar sensitivity to excess Cd in terms of biomass production, photosynthesis activity and Cd accumulation, though physiological and biochemical traits revealed different defence strategies. In particular, Eridano maintained in any Cd treatment the number of its constitutively wider blade leaves, while the number of I-214 leaves (with lower size) was reduced. H2O2 increased 4.5- and 13-fold in I-214 leaves after the lowest (L) and highest (H) Cd treatments, respectively, revealing the induction of oxidative burst. NO, constitutively higher in I-214 than Eridano, progressively increased in both clones with the enhancement of Cd concentration in the substrate. I-214 showed a more elevated antioxidative capacity (GSH/GSSG) and higher photochemical efficiency of PSII (Fv/Fm) and de-epoxidation degree of xantophylls-cycle (DEPS). The glutathione pool was not affected by Cd treatment in both clones, while non-protein thiols and phytochelatins were reduced at L Cd treatment in I-214. Overall, these two clones presented high adaptability to Cd stress and are both suitable to develop and growth in environments contaminated with this metal, thus being promising for their potential use in phytoremediation programmes.  相似文献   

8.
An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35 °C day/28 °C night) and compared to control conditions (17 °C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.  相似文献   

9.
Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400 h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD = −3.1 MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5 °C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20–30 days Tmax ≥ 35 °C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r2 from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between commercially-available cultivars.  相似文献   

10.
Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the γ-tocopherol methyl transferase (γ-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of α-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the γ-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial “O” level to the “P” (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that α-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea.  相似文献   

11.
In rape leaf discs the response to osmotic stress has been found to be associated with increases in putrescine and 1,3-diaminopropane (an oxidation product of spermidine and/or spermine) and decreases in spermidine titers. In contrast, agmatine and spermine titers showed small changes while cadaverine accumulated massively. Similar results were observed in whole rape seedlings subjected to drought conditions. -DL-difluoromethylarginine (DFMA), a specific irreversible inhibitor of arginine decarboxylase, strongly inhibited polyamine accumulation in unstressed rape leaf discs, which suggested that the arginine decarboxylase pathway is constitutively involved in putrescine biosynthesis. In leaf discs treated under high osmotic stress conditions, both DFMA and DFMO (-DL-difluoromethylornithine, a specific and irreversible inhibitor of ornithine decarboxylase) inhibited the accumulation of polyamines. Although the stressed discs treated with DFMA had a lower concentration of putrescine than those treated with DFMO, we propose that under osmotic stress the synthesis of putrescine might involve both enzymes. DFMA, but not DFMO, was also found to inhibit cadaverine formation strongly in stressed explants. The effects on polyamine biosynthesis and catabolism of cyclohexylamine, the spermidine synthase inhibitor, aminoguanidine, the diamine-oxidase inhibitor and -aminobutyric acid, a product of putrescine oxidation via diamine oxidase or spermidine oxidation via polyamine oxidase were found to depend on environmental osmotic challenges. Thus, it appears that high osmotic stress did not block spermidine biosynthesis, but induced a stimulation of spermidine oxidation. We have also demonstrated that in stressed leaf discs, exogenous ethylene, applied in the form of (2-chloroethyl) phosphonic acid or ethephon, behaves as an inhibitor of polyamine synthesis with the exception of agmatine and diaminopropane. In addition, in stressed tissues, when ethylene synthesis was inhibited by aminooxyacetic acid or aminoethoxyvinylglycine, S-adenosylmethionine utilization in polyamine synthesis was not promoted. The relationships between polyamine and ethylene biosynthesis in unstressed and stressed tissues are discussed.  相似文献   

12.
To investigate the effect of the light spectrum on photosynthesis, growth, and secondary metabolites Rosa hybrida ‘Scarlet’, Chrysanthemum morifolium ‘Coral Charm’, and Campanula portenschlagiana ‘BluOne’ were grown at 24/18 °C day/night temperature under purpose-built LED arrays yielding approximately 200 μmol m−2 s−1 at plant height for 16 h per day. The four light treatments were (1) 40% Blue/60% Red, (2) 20% Blue/80% Red, (3) 100% Red, and (4) 100% White (Control). The plant height was smallest in 40% Blue/60% Red in roses and chrysanthemums, while the biomass was smallest in the white control in roses and in 100% Red in chrysanthemums. The total biomass was unaffected by the spectrum in campanulas, while the leaf area was smallest in the 40% Blue/60% Red treatment. In 100% Red curled leaves and other morphological abnormalities were observed. Increasing the blue to red ratio increased the stomatal conductance though net photosynthesis was unaffected, indicating excess stomatal conductance in some treatments. With higher blue light ratio all phenolic acids and flavonoids increased. In view of the roles of these secondary metabolites as antioxidants, anti-pathogens, and light protectants, we hypothesize that blue light may predispose plants to better cope with stress.  相似文献   

13.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

14.
Alterations in temperature adaptation processes and changes in the content of stress-related compounds, polyamines and salicylic acid were evaluated in Atnoa1 (NO-associated 1) Arabidopsis mutant. The Fv/Fm chlorophyll-a fluorescence induction parameter and the actual quantum yield were significantly lower in the Atnoa1 mutant than in the wild-type. In the wild-type Col-0, the fastest increase in the non-photochemical quenching (NPQ) occurred in plants pre-treated at low temperature (4 °C), while the slowest was in those adapted to 30 °C. The NPQ showed not only a substantially increased level in the light-adapted state, but also more rapid light induction after the dark-adapted state in the Atnoa1 mutant than in the wild-type. The results of freezing tests indicated that both the wild-type and the mutant had better freezing tolerance after cold hardening, since no significant differences were found between the genotypes. The level of putrescine increased substantially, while that of spermine decreased by the end of the cold-hardening (4 °C, 4 d) period. The quantity of spermidine in Atnoa1 was significantly higher than in Col-0, at both control and cold-hardening temperatures. A similar trend was observed for spermine, but only under control conditions. The mutant plants showed substantially higher salicylic acid (SA) contents for both the free and bound forms. This difference was significant not only in the control, but also in the cold-hardened plants. These results suggest that there is a compensation mechanism in Atnoa1 mutant Arabidopsis plants to reduce the negative effects of the mutation. These adaptation processes include the stimulation of photoprotection and alterations in the SA and polyamine compositions.  相似文献   

15.
Hugo Pettai  Arvi Freiberg  Agu Laisk 《BBA》2005,1708(3):311-321
We have found that long-wavelength quanta up to 780 nm support oxygen evolution from the leaves of sunflower and bean. The far-red light excitations are supporting the photochemical activity of photosystem II, as is indicated by the increased chlorophyll fluorescence in response to the reduction of the photosystem II primary electron acceptor, QA. The results also demonstrate that the far-red photosystem II excitations are susceptible to non-photochemical quenching, although less than the red excitations. Uphill activation energies of 9.8 ± 0.5 kJ mol−1 and 12.5 ± 0.7 kJ mol−1 have been revealed in sunflower leaves for the 716 and 740 nm illumination, respectively, from the temperature dependencies of quantum yields, comparable to the corresponding energy gaps of 8.8 and 14.3 kJ mol−1 between the 716 and 680 nm, and the 740 and 680 nm light quanta. Similarly, the non-photochemical quenching of far-red excitations is facilitated by temperature confirming thermal activation of the far-red quanta to the photosystem II core. The observations are discussed in terms of as yet undisclosed far-red forms of chlorophyll in the photosystem II antenna, reversed (uphill) spill-over of excitation from photosystem I antenna to the photosystem II antenna, as well as absorption from thermally populated vibrational sub-levels of photosystem II chlorophylls in the ground electronic state. From these three interpretations, our analysis favours the first one, i.e., the presence in intact plant leaves of a small number of far-red chlorophylls of photosystem II. Based on analogy with the well-known far-red spectral forms in photosystem I, it is likely that some kind of strongly coupled chlorophyll dimers/aggregates are involved. The similarity of the result for sunflower and bean proves that both the extreme long-wavelength oxygen evolution and the local quantum yield maximum are general properties of the plants.  相似文献   

16.
17.
18.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   

19.
Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance.  相似文献   

20.
Osmotic stress responses of water content, photosynthetic parameters and biomass production were investigated in wheat-Aegilops biuncialis amphiploids and in wheat genotypes to clarify whether they can use to improve the drought tolerance of bread wheat. A decrease in the osmotic pressure of the medium resulted in considerable water loss, stomatal closure and a decreased CO2 assimilation rate for the wheat genotypes, while the changes in these parameters were moderate for the amphiploids. Maximal assimilation rate was maintained at high level even under severe osmotic stress in the amphiploids, while it decreased substantially in the wheat genotypes. Nevertheless, the effective quantum yield of PS II was higher and the quantum yield of non-photochemical quenching of PS II and PS I was lower for the amphiploids than for the wheat cultivars. Parallel with this, higher cyclic electron flow was detected in wheat than in the amphiploids. The elevated photosynthetic activity of amphiploids under osmotic stress conditions was manifested in higher biomass production by roots and shoots as compared to wheat genotypes. These results indicate that the drought-tolerant traits of Ae. biuncialis can be manifested in the wheat genetic background and these amphiploids are suitable genetic materials for improving drought tolerance of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号