首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
2.

Background and Aims

The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined.

Methods

Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR.

Key Results

Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences.

Conclusions

Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites.  相似文献   

3.
BACKGROUND: Carnivorous pitcher plants (CPPs) use cone-shaped leaves to trap animals for nutrient supply but are not able to kill all intruders of their traps. Numerous species, ranging from bacteria to vertrebrates, survive and propagate in the otherwise deadly traps. This paper reviews the literature on phytotelmata of CPPs. PITCHER: Fluid as a Habitat The volumes of pitchers range from 0·2 mL to 1·5 L. In Nepenthes and Cephalotus, the fluid is secreted by the trap; the other genera collect rain water. The fluid is usually acidic, rich in O(2) and contains digestive enzymes. In some taxa, toxins or detergents are found, or the fluid is extremely viscous. In Heliamphora or Sarracenia, the fluid differs little from pure water. INQUILINE: Diversity Pitcher inquilines comprise bacteria, protozoa, algae, fungi, rotifers, crustaceans, arachnids, insects and amphibia. The dominant groups are protists and Dipteran larvae. The various species of CPPs host different sets of inquilines. Sarracenia purpurea hosts up to 165 species of inquilines, followed by Nepenthes ampullaria with 59 species, compared with only three species from Brocchinia reducta. Reasons for these differences include size, the life span of the pitcher as well as its fluid. MUTUALISTIC: Activities Inquilines closely interact with their host. Some live as parasites, but the vast majority are mutualists. Beneficial activities include secretion of enzymes, feeding on the plant's prey and successive excretion of inorganic nutrients, mechanical break up of the prey, removal of excessive prey and assimilation of atmospheric N(2). CONCLUSIONS: There is strong evidence that CPPs influence their phytotelm. Two strategies can be distinguished: (1) Nepenthes and Cephalotus produce acidic, toxic or digestive fluids and host a limited diversity of inquilines. (2) Genera without efficient enzymes such as Sarracenia or Heliamphora host diverse organisms and depend to a large extent on their symbionts for prey utilization.  相似文献   

4.
5.
In greenhouse experiments, broadleaf tobacco plants were inoculated with tobacco cyst (Globodera tabacum tabacum) or root-knot (Meloidogyne hapla) nematodes 3, 2, or 1 week before or at the same time as Fusarium oxysporum. Plants infected with nematodes prior to fungal inoculation had greater Fusarium wilt incidence and severity than those simultaneously inoculated. G. t. tabacum increased wilt incidence and severity more than did M. hapla. Mechanical root wounding within 1 week of F. oxysporum inoculation increased wilt severity. In field experiments, early-season G. t. tabacum control by preplant soil application of oxamyl indirectly limited the incidence and severity of wilt. Wilt incidence was 48%, 23%, and 8% in 1989 and 64%, 60%, and 19% in 1990 for 0.0, 2.2, and 6.7 kg oxamyl/ha, respectively. Early infection of tobacco by G. t. tabacum predisposed broadleaf tobacco to wilt by F. oxysporum.  相似文献   

6.
Adhesion of leukocytes to substrate involves the coupling of disparate length and timescales between molecular mechanics and macroscopic transport, and existing models of cell adhesion do not use full cellular information. To address these challenges, a multiscale computational approach for studying the adhesion of a cell on a substrate is developed and assessed. The cellular level model consists of a continuum representation of the field equations and a moving boundary tracking capability to allow the cell to change its shape continuously. At the receptor-ligand level, a bond molecule is mechanically represented by a spring. Communication between the macro/micro- and nanoscale models is facilitated interactively during the computation. The computational model is assessed using an adherent cell, rolling and deforming along the vessel wall under imposed shear flows. Using this approach, we first confirm existing numerical and experimental results. In this study, the intracellular viscosity and interfacial tension are found to directly affect the rolling of a cell. Our results also show that the presence of a nucleus increases the bond lifetime, and decreases the cell rolling velocity. Furthermore, it is found that a cell with a larger diameter rolls faster, and decreases the bond lifetime. This study shows that cell rheological properties have significant effects on the adhesion process contrary to what has been hypothesized in most literature.  相似文献   

7.
8.
9.

Background

Starch is a main source of carbohydrate in human diets, but differences are observed in postprandial glycaemia following ingestion of different foods containing identical starch contents. Such differences reflect variations in rates at which different starches are digested in the intestine. In seeking explanations for these differences, we have studied the interaction of α-amylase with starch granules. Understanding this key step in digestion should help with a molecular understanding for observed differences in starch digestion rates.

Methods

For enzymes acting upon solid substrates, a Freundlich equation relates reaction rate to enzyme adsorption at the surface. The Freundlich exponent (n) equals 2/3 for a liquid-smooth surface interface, 1/3 for adsorption to exposed edges of ordered structures and 1.0 for solution–solution interfaces. The topography of a number of different starch granules, revealed by Freundlich exponents, was compared with structural data obtained by differential scanning calorimetry and Fourier transform infrared spectroscopy with attenuated total internal reflectance (FTIR-ATR).

Results

Enzyme binding rate and FTIR-ATR peak ratio were directly proportional to n and ΔgelH was inversely related to n. Amylase binds fastest to solubilised starch and to granules possessing smooth surfaces at the solid–liquid interface and slowest to granules possessing ordered crystalline surfaces.

Conclusions

Freundlich exponents provide information about surface blocklet structures of starch that supplements knowledge obtained from physical methods.

General Significance

Nanoscale structures at the surface of starch granules influence hydrolysis by α-amylase. This can be important in understanding how dietary starch is digested with relevance to diabetes, cardiovascular health and cancer.  相似文献   

10.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   

11.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

12.
The formation of polypeptide aggregates, including amyloid fibrils and prions, is a biochemical process of considerable interest in the context of its association with ageing and neurodegeneration. Aggregation occurs typically with a lag phase and a growth phase that reflect an underlying nucleation-polymerisation mechanism. While the propensity of nucleation can be estimated from the lag time t(l), the efficiency of growth is represented by the growth rate k(g). Here, I have analysed the absolute k(g) and t(l) values from a total of 298 samples prepared from insulin, glucagon and different sequence variants of the Alzheimer's Abeta(1-40) peptide. Although these samples differ in the conditions of aggregation, systematic comparison reveals an overall similarity in the plot of k(g)versus t(l). The plot fits readily with the simple equation k(g)=alpha/t(l) and by using a proportionality factor alpha of 4.5. In contrast to the individual values of k(g) and t(l) that depend substantially on sequential and environmental parameters, alpha seems much less affected by such factors. These data suggest mechanistic similarities in the nucleation behaviour of different amyloid-like fibrils and aggregates.  相似文献   

13.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

14.
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant.  相似文献   

15.
16.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

17.
Variability in reproduction and pathogenicity of 12 populations of Meloidogyne arenaria race 1 was evaluated on Florunner peanut, Centennial soybean, Rutgers tomato, G70, K326, and Mc944 tobacco, and Carolina Cayenne, Mississippi Nemaheart, and Santanka pepper. Differences among M. arenaria populations in rates of egg production 45 days after inoculation were observed for all cultivars except Santanka pepper. Differences among populations in dry top weights or fresh root weights were recorded on all cultivars. Numbers of nematode eggs produced on Florunner peanut varied from 3,419 to 11,593/g fresh root weight. On resistant tobacco cultivars (G70 and K326), one nematode population produced high numbers of eggs (12,042 and 6,499/g fresh root weight on G70 and K326, respectively), whereas the other populations produced low numbers of eggs (less than 500 eggs/g fresh root weight on both cultivars). Two variant M. arenaria race 1 populations were identified by factor analysis of reproductive rates on all nine cultivars. Differences m reproduction and pathogenicity observed among populations would affect the design of sustainable management systems for M. arenaria.  相似文献   

18.

Background and Aims

Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence.

Methods

The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species.

Key Results

It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods.

Conclusions

These results underline the functional role of delayed germination and light for survival of seeds in the soil and hence their importance for shaping the first part of the seed decay curve. Our analyses highlight the detection of diurnally fluctuating temperatures as a third mechanism to achieve higher soil seed persistence after burial which interacts strongly with season. We therefore advocate focusing future research on mechanisms that favour soil seed persistence after longer burial times and moving from studies of morphological features to exploration of germination traits such as reaction to diurnally fluctuating temperatures.  相似文献   

19.
Zolmitriptan is a novel and highly selective 5-HT(1B/1D) receptor agonist used as an acute oral treatment for migraine. There are few reports regarding the in vitro metabolism of zolmitriptan. Previous studies indicated zolmitriptan was metabolized via CYP1A2 in human hepatic microsomes. In order to study the enzyme kinetics and drug interaction, the metabolism of zolmitriptan and possible drug-drug interactions were investigated in rat hepatic microsomes induced with different inducers. An active metabolite, N-demethylzolmitriptan, was detected and another minor, inactive metabolite that was reported in human hepatic microsomes was not detected in this study. The enzyme kinetics for the formation of N-demethylzolmitriptan from zolmitriptan in rat liver microsomes pretreated with BNF were 96+/-22 microM (K(m)), 11+/-3 pmol min(-1)mg protein(-1) (V(max)), and 0.12+/-0.02 microl min(-1)mg protein(-1) (CL(int)). Fluvoxamine and diphenytriazol inhibited zolmitriptan N-demethylase activity catalyzed by CYP1A2 (K(i)=3.8+/-0.3 and 3.2+/-0.1 microM, respectively). Diazepam and propranolol elicited a slight inhibitory effect on the metabolism of zolmitriptan (K(i)=70+/-11 and 90+/-18 microM, respectively). Cimetidine and moclobemide produced no significant effect on the metabolism of zolmitriptan. Fluvoxamine yielded a k(inactivation) value of 0.16 min(-1), and K(i) of 57 microM. The results suggest that rat hepatic microsomes are a reasonable model to study the metabolism of zolmitriptan, although there is a difference in the amount of minor, inactive metabolites between human hepatic microsomes and rat liver microsomes. The results of the inhibition experiments provided information for the interactions between zolmitriptan and drugs co-administrated in clinic, and it is helpful to explain the drug-drug interactions of clinical relevance on enzyme level. This study aso demonstrated that fluvoxamine may be a mechanism-based inactivator of CYP1A2.  相似文献   

20.
PI3Kα, a heterodimeric lipid kinase, catalyzes the conversion of phosphoinositide-4,5-bisphosphate (PIP2) to phosphoinositide-3,4,5-trisphosphate (PIP3), a lipid that recruits to the plasma membrane proteins that regulate signaling cascades that control key cellular processes such as cell proliferation, carbohydrate metabolism, cell motility, and apoptosis. PI3Kα is composed of two subunits, p110α and p85, that are activated by binding to phosphorylated receptor tyrosine kinases (RTKs) or their substrates. The gene coding for p110α, PIK3CA, has been found to be mutated in a large number of tumors; these mutations result in increased PI3Kα kinase activity. The structure of the complex of p110α with a fragment of p85 containing the nSH2 and the iSH2 domains has provided valuable information about the mechanisms underlying the physiological activation of PI3Kα and its pathological activation by oncogenic mutations. This review discusses information derived from x-ray diffraction and theoretical calculations regarding the structural and dynamic effects of mutations in four highly mutated regions of PI3K p110α, as well as the proposed mechanisms by which these mutations increase kinase activity. During the physiological activation of PI3Kα, the phosphorylated tyrosine of RTKs binds to the nSH2 domain of p85, dislodging an inhibitory interaction between the p85 nSH2 and a loop of the helical domain of p110α. Several of the oncogenic mutations in p110α activate the enzyme by weakening this autoinhibitory interaction. These effects involve structural changes as well as changes in the dynamics of the enzyme. One of the most common p110α mutations, H1047R, activates PI3Kα by a different mechanism: it increases the interaction of the enzyme with the membrane, maximizing the access of the PI3Kα to its substrate PIP2, a membrane lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号