共查询到20条相似文献,搜索用时 0 毫秒
1.
Brocklyn JR 《World journal of biological chemistry》2010,1(10):307-312
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that has been implicated in regulation of a number of cancer cell malignant behaviors, including cell proliferation, survival, chemotherapeutic resistance and angiogenesis. However, the effects of S1P on cancer cell migration, invasion and metastasis, are perhaps its most complex, due to the fact that, depending upon the S1P receptors that mediate its responses and the crosstalk with other signaling pathways, S1P can either positively or negatively regulate invasion. This review summarizes the effects of S1P on cancer cell invasion and the mechanisms by which it affects this important aspect of cancer cell behavior. 相似文献
2.
Smith-Pearson PS Greuber EK Yogalingam G Pendergast AM 《The Journal of biological chemistry》2010,285(51):40201-40211
The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas. 相似文献
3.
目的研究奥沙利铂对人子宫内膜癌细胞HEC-1A侵袭转移的影响。方法体外稳定培养HEC-1A细胞株系,用不同浓度奥沙利铂(40、80、160μg/ml)给药72h后,采用Transwell法测定奥沙利铂对HEC-1A侵袭能力的影响,重组基底膜试验测定奥沙利铂对HEC-1A粘附能力的影响,划痕试验检测奥沙利铂对HEC-1A迁移能力的影响。结果与未处理对照组比较,奥沙利铂(40、80、160μg/ml)明显抑制HEC-1A侵袭性,提高侵袭抑制率(P0.01),显著降低肿瘤细胞的迁移能力(P0.01),降低HEC-1A粘附程度(P0.01)。结论奥沙利铂有效抑制子宫内膜癌细胞继发性侵袭及转移,从而发挥抗癌作用。 相似文献
4.
Katada K Tomonaga T Satoh M Matsushita K Tonoike Y Kodera Y Hanazawa T Nomura F Okamoto Y 《Journal of Proteomics》2012,75(6):1803-1815
Head and neck squamous cell carcinoma (HNSCC) is usually found at a late stage and distant metastasis occurs at high frequency; therefore, novel prognostic markers are needed. This study was aimed to identify novel tumor markers in HNSCC. We identified 65 proteins which were significantly increased or decreased in the tumors by 2D-DIGE using 12 HNSCC and adjacent non-cancer tissues. Western blotting and immunohistochemical analysis confirmed that the expression of plectin was significantly increased in most cancer tissues as compared with non-cancer tissues. Strikingly, the suppression of endogenous plectin using siRNA inhibited the proliferation, migration and invasion of HNSCC cells and down-regulated Erk 1/2 kinase. Furthermore, immunohistochemistry using paraffin-embedded tissues from 62 patients showed not only that the frequency of recurrence was correlated with the plectin expression but that the prognosis of patients with a high plectin was extremely poor. Moreover, the survival rate of patients with a high plectin was significantly lower than that of patients with low E-cadherin levels, which is known to correlate with the poor prognosis of HNSCC. Our findings suggest that plectin promotes the migration and invasion of HNSCC cells through activation of Erk 1/2 kinase and is a potential prognostic biomarker of HNSCC. 相似文献
5.
6.
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TßRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease. 相似文献
7.
Invasion and metastasis are the most deadly hallmarks of cancer.Once a cancer has acquired the ability to colonize new sites in the body it becomes dramatically more difficult to treat.This has made it a focus of much of cancer research.The humble fruit fly,Drosophila melanogaster,has despite its relative simplicity,made significant contributions to the understanding of tumor progression.In this review we outline and highlight those with an emphasis on modeling the genetic and epigenetic changes required for invasion and metastasis.We will revisit the early years of cancer modeling in Drosophila where the first parallels were drawn between Drosophila and vertebrate neoplasms and highlight recent advances using genetic screens and interactions with the epithelial microenvironment and innate immune system.We focus on the power and limitations of current fly models of metastasis. 相似文献
8.
Min-Jung Kim Yoo-Sun Lee Gi-Yeon Han Han-Na Lee Chiyoung Ahn 《Bioscience, biotechnology, and biochemistry》2013,77(9):1438-1446
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins. 相似文献
9.
Silvana Papagerakis Giuseppe Pannone Li Zheng Imad About Nawar Taqi Nghia P.T. Nguyen Margarite Matossian Blake McAlpin Angela Santoro Jonathan McHugh Mark E. Prince Petros Papagerakis 《Experimental cell research》2014
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. 相似文献
10.
Hiroshi Yamada Tadashi Abe Shun-Ai Li Mihoko Isoda Yasutomo Nasu Akira Asai 《Biochemical and biophysical research communications》2009,390(4):1142-1289
Dynamic remodeling of actin filaments are bases for a variety of cellular events including cell motility and cancer invasion, and the regulation of actin dynamics implies dynamin, well characterized endocytotic protein. Here we report that dynasore, a inhibitor of dynamin GTPase, potently destabilizes F-actin in vitro, and it severely inhibits the formation of pseudopodia and cancer cell invasion, both of which are supported by active F-actin formation. Dynasore rapidly disrupted F-actin formed in brain cytosol in vitro, and the dynasore’s effect on F-actin was indirect. Dynasore significantly suppressed serum-induced lamellipodia formation in U2OS cell. Dynasore also destabilized F-actin in resting cells, which caused the retraction of the plasma membrane. A certain amount of dynamin 2 in U2OS cells localized along F-actin, and co-localized with cortactin, a physiological binding partner of dynamin and F-actin. However, these associations of dynamin were partially disrupted by dynasore treatment. Furthermore, invasion activity of H1080 cell, a lung cancer cell line, was suppressed by approximately 40% with dynasore treatment. These results strongly suggest that dynasore potently destabilizes F-actin, and the effect implies dynamin. Dynasore or its derivative would be suitable candidates as potent anti-cancer drugs. 相似文献
11.
Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as “invadosomes,” are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process. 相似文献
12.
Previous studies have shown that testisin promotes malignant transformation in cancer cells. To define the mechanism of testisin-induced carcinogenesis, we performed yeast two-hybrid analysis and identified maspin, a tumor suppressor protein, as a testisin-interacting molecule. The direct interaction and cytoplasmic co-localization of testisin with maspin was confirmed by immunoprecipitation and confocal analysis, respectively. In cervical cancer cells, maspin modulated cell death and invasion; however, these effects were inhibited by testisin in parallel experiments. Of interest, the doxorubicin resistance was dramatically reduced by testisin knockdown (P = 0.016). Moreover, testisin was found to be over-expressed in cervical cancer samples as compared to matched normal cervical tissues. Thus, we postulate that testisin may promote carcinogenesis by inhibiting tumor suppressor activity of maspin.
Structured summary
MINT-7712215, MINT-7712176: Testisin (uniprotkb:Q9Y6M0) binds (MI:0407) to Maspin (uniprotkb:P36952) by pull down (MI:0096)MINT-7712188: Testisin (uniprotkb:Q9Y6M0) and Maspin (uniprotkb:P36952) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7712115: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by two-hybrid (MI:0018)MINT-7712162, MINT-7712128: Maspin (uniprotkb:P36952) physically interacts (MI:0915) with Testisin (uniprotkb:Q9Y6M0) by anti bait co-immunoprecipitation (MI:0006)MINT-7712147: Testisin (uniprotkb:Q9Y6M0) physically interacts (MI:0915) with Maspin (uniprotkb:P36952) by anti tag co-immunoprecipitation (MI:0007) 相似文献13.
Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin , and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. 相似文献
14.
Involvement of HDAC1 in E-cadherin expression in prostate cancer cells; its implication for cell motility and invasion 总被引:1,自引:0,他引:1
In this study, we investigate the molecular mechanism by which histone deacetylase (HDAC) inhibitors exert anti-invasiveness effect against prostate cancer cells. We first evaluate the growth inhibition effect of HDAC inhibitors in prostate cancer cells, which is accompanied by induction of p21WAF1 expression and accumulation of acetylated histones. And we found that the migration and invasion of prostate cancer cells is strongly inhibited by treatment with HDAC inhibitors. In parallel, E-cadherin level is highly up-regulated in HDAC inhibitor-treated prostate cancer cells. And siRNA knockdown of E-cadherin significantly diminishes the anti-invasion effect of HDAC inhibitors, indicating that E-cadherin overexpression is one of possible mechanism for anti-invasion effect of HDAC inhibitors. Furthermore, specific downregulation of HDAC1, but not HDAC2, causes E-cadherin expression and subsequent inhibition of cell motility and invasion. Collectively, our data demonstrate that HDAC1 is a major repressive enzyme for E-cadherin expression as well as HDAC inhibitor-mediated anti-invasiveness. 相似文献
15.
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements.We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation.CSC can be the key to the elaboration of anti-cancer-based therapy.In this article,we focus on a controversial new theme relating to CSC.Tumorigenesis may have a critical stage characterized as a "therapeutic window",which can be identified by asso-ciation of molecular,biochemical and biological events.Identifying such a stage can allow the production of more effective therapies (e.g.manipulated stem cells) to treat several cancers.More importantly,confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC.This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells.Currently,there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC.Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer.The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g.normal stem cells,CSC and embryonic stem cells).The differential studies of the convergence may result in novel therapies for treating cancers. 相似文献
16.
Jinming Wang Yuehua Liu Xiaofang Wang Jing Li Jing Wei Yingjun Wang Wanyu Song Zhan Zhang 《生物化学与生物物理学报:疾病的分子基础》2018,1864(12):3623-3630
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future. 相似文献
17.
18.
Platycodin D (PD) is a major active component of the roots of Platycodon grandiflorum (Jacq.) A.DC. and possesses multiple biological and pharmacological properties, including anti-cancer activity. The aim of this study was to characterize PD-induced cytoplasmic vacuolation in human cancer cells and investigate the underlying mechanisms. PD-induced cancer cell death was associated with cytoplasmic pinocytic and autophagic vacuolation. Cellular energy levels were decreased by this compound, leading to the activation of AMP-activated protein kinase (AMPK). Additionally, compound C, an inhibitor of AMPK, completely prevented PD-induced vacuolation. These results suggest that PD induces cancer cell death, associated with excessive vacuolation through AMPK activation when cellular energy levels are low. Therefore, our findings provide a mechanistic rationale for a novel combinatorial approach using PD to treat cancer. 相似文献
19.
Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis 总被引:38,自引:0,他引:38
E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell-cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin-mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin-expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin-expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin-expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin-expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin-expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein barriers, while the increase in their adherence to endothelium may improve their ability to enter and exit the vasculature, two properties that may be responsible for metastasis of N-cadherin-expressing cells. 相似文献
20.
Tuyaerts S Aerts JL Corthals J Neyns B Heirman C Breckpot K Thielemans K Bonehill A 《Cancer immunology, immunotherapy : CII》2007,56(10):1513-1537
The discovery of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, together with
an improved insight in dendritic cell biology illustrating their key function in the immune system, have provided a rationale
to initiate dendritic cell-based cancer immunotherapy trials. Nevertheless, dendritic cell vaccination is in an early stage,
as methods for preparing tumor antigen presenting dendritic cells and improving their immunostimulatory function are continuously
being optimized. In addition, recent improvements in immunomonitoring have emphasized the need for careful design of this
part of the trials. Still, valuable proofs-of-principle have been obtained, which favor the use of dendritic cells in subsequent,
more standardized clinical trials. Here, we review the recent developments in clinical DC generation, antigen loading methods
and immunomonitoring approaches for DC-based trials. 相似文献