首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

2.
Panicum milioides, a naturally occurring species with C4-like Kranz leaf anatomy, is intermediate between C3 and C4 plants with respect to photorespiration and the associated oxygen inhibition of photosynthesis. This paper presents direct evidence for a limited degree of C4 photosynthesis in this C3-C4 intermediate species based on:

1. (a) the appearance of 24% of the total 14C fixed following 4 s photosynthesis in 14CO2-air by excised leaves in malate and aspartate and the complete transfer of label from the C4 acids to Calvin cycle intermediates within a 15 s chase in 12CO2-air;

2. (b) pyruvate- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation of oxaloacetate- or 3-phosphoglycerate-dependent O2 evolution by illuminated mesophyll protoplasts, but not bundle sheath strands; and

3. (c) NAD-malic enzyme-dependent decarboxylation of C4 acids at the C-4 carboxyl position, C4 acid-dependent O2 evolution, and 14CO2 donation from [4-14C]C4 acids to Calvin cycle intermediates during photosynthesis by bundle sheath strands, but not mesophyll protoplasts.

However, P. milioides differs from C4 plants in that the activity of the C4 cycle enzymes is only 15 to 30% of a C4 Panicum species and the Calvin cycle and phosphoenolpyruvate carboxylase are present in both cell types. From these and related studies (Rathnam, C.K.M. and Chollet, R. (1979) Arch. Biochem. Biophys. 193, 346–354; (1978) Biochem. Biophys. Res. Commun. 85, 801–808) we conclude that reduced photorespiration in P. milioides is due to a limited degree of NAD-malic enzyme-type C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath, but not mesophyll, ribulosebisphosphate carboxylase-oxygenase.  相似文献   


3.
Abstract. The photosynthetic responses to temperature in C3, C3-C4 intermediate, and C4 species in the genus Flaveria were examined in an effort to identify whether the reduced photorespiration rates characteristic of C3-C4 intermediate photosynthesis result in adaptive advantages at warm leaf temperatures. Reduced photorespiration rates were reflected in lower CO2 compensation points at all temperatures examined in the C3-C4 intermediate, Flaveria floridana, compared to the C3 species, F. cronquistii. The C3-C4 intermediate, F. floridana, exhibited a C3-like photosynthetic temperature dependence, except for relatively higher photosynthesis rates at warm leaf temperatures compared to the C3 species, F. cronquistii. Using models of C3 and C3-C4 intermediate photosynthesis, it was predicted that by recycling photorespired CO2 in bundle-sheath cells, as occurs in many C3-C4 intermediates, photosynthesis rates at 35°C could be increased by 28%, compared to a C3 plant. Without recycling photorespired CO2, it was calculated that in order to improve photosynthesis rates at 35°C by this amount in C3 plants, (1) intercellular CO2 partial pressures would have to be increased from 25 to 31 Pa, resulting in a 57% decrease in water-use efficiency, or (2) the activity of RuBP carboxylase would have to be increased by 32%, resulting in a 22% decrease in nitrogen-use efficiency. In addition to the recycling of photorespired CO2, leaves of F. floridana appear to effectively concentrate CO2 at the active site of RuBP carboxylase, increasing the apparent carboxylation efficiency per unit of in vitro RuBP carboxylase activity. The CO2-concentrating activity also appears to reduce the temperature sensitivity of the carboxylation efficiency in F. floridana compared to F. cronquistii. The carboxylation efficiency per unit of RuBP carboxylase activity decreased by only 38% in F. floridana, compared to 50% in F. cronquistii, as leaf temperature was raised from 25 to 35°C. The C3-C4 intermediate, F. ramosissima, exhibited a photosynthetic temperature temperature response curve that was more similar to the C4 species, F. trinervia, than the C3 species, F. cronquistii. The C4-like pattern is probably related to the advanced nature of C4-like biochemical traits in F. ramosissima The results demonstrate that reductions in photorespiration rates in C3-C4 intermediate plants create photosynthetic advantages at warm leaf temperatures that in C3 plants could only be achieved through substantial costs to water-use efficiency and/or nitrogen-use efficiency.  相似文献   

4.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

5.
Abstract Models developed to explain the biphasic response of CO2 compensation concentration to O2 concentration and the C3-like carbon isotope discrimination in C3-C4 intermediate species are used to characterize quantitatively the steps necessary in the evolution of C4 photosynthesis. The evolutionary stages are indicated by model outputs, CO2 compensation concentration and δ13C value. The transition from intermediate plants to C4 plants requires the complete formation of C4 cycle capacity, expressed by the models as transition from C4 cycle limitation by phosphoenolpyruvate (PEP) regeneration rate to limitation by PEP carboxylase activity. Other steps refer to CO2 leakage from bundle sheath cells, to further augmentations of C4 cycle components, to the repression of ribulose-1,5-bisphos-phate carboxylase in the mesophyll cells, and to a decrease in the CO2 affinity of the enzyme. Possibilities of extending the suggested approach to other physiological characteristics, and the adaptive significance of the steps envisaged, are discussed.  相似文献   

6.
Utilization of O2 in the metabolic optimization of C4 photosynthesis   总被引:1,自引:0,他引:1  
The combined effects of O2 on net rates of photosynthesis, photosystem II activity, steady‐state pool size of key metabolites of photosynthetic metabolism in the C4 pathway, C3 pathway and C2 photorespiratory cycle and on growth were evaluated in the C4 species Amaranthus edulis and the C3 species Flaveria pringlei. Increasing O2 reduced net CO2 assimilation in F. pringlei due to an increased flux of C through the photorespiratory pathway. However, in A. edulis increasing O2 up to 5–10% stimulated photosynthesis. Analysis of the pool size of key metabolites in A. edulis suggests that while there is some O2 dependent photorespiration, O2 is required for maximizing C4 cycle activity to concentrate CO2 in bundle sheath cells. Therefore, the response of net photosynthesis to O2 in C4 plants may result from the balance of these two opposing effects. Under 21 versus 5% O2, growth of A. edulis was stimulated about 30% whereas that of F. pringlei was inhibited about 40%.  相似文献   

7.
The North American tallgrass prairie is composed of a diverse mix of C3 and C4 plant species that are subject to multiple resource limitations. C4 grasses dominate this ecosystem, purportedly due to greater photosynthetic capacity and resource-use efficiency associated with C4 photosynthesis. We tested the hypothesis that intrinsic physiological differences between C3 and C4 species are consistent with C4 grass dominance by comparing leaf gas exchange and chlorophyll fluorescence variables for seven C4 and C3 herbaceous species (legumes and non-legumes) in two different settings: experimental mesocosms and natural grassland sites. In the mesocosms, C4 grasses had higher photosynthetic rates, water potentials and water-use efficiency than the C3 species. These differences were absent in the field, where photosynthetic rates declined similarly among non-leguminous species. Thus, intrinsic photosynthetic advantages for C4 species measured in resource-rich mesocosms could not explain the dominance of C4 species in the field. Instead, C4 dominance in this ecosystem may depend more on the ability of the grasses to grow rapidly when resources are plentiful and to tolerate multiple limitations when resources are scarce.  相似文献   

8.
We have integrated two cDNAs expressing Sorghum photosynthetic phosphoenolpyruvate carboxylase (C4-PEPC) and NADP-malate dehydrogenase (cpMDH), two key enzymes involved in the primary carbon fixation pathway of NADP-malic enzyme-type C4 plants, separately or together into a C3 plant (potato). Analysis of the transgenic plants showed a 1.5-fold increase in PEPC and cpMDH activities compared to untransformed plants. Immunolocalization confirmed an increase at the protein level of these two enzymes in the transgenic plants and indicated that the Sorghum cpMDH was specifically addressed to the chloroplasts of potato mesophyll cells. However, integration of either or both of the cDNAs into the potato genome did not appear to significantly modify either tuber starch grain content or the rate of photosynthetic O2 production compared to control untransformed plants. The low level of transgene expression probably explains the lack of influence on carbon metabolism and photosynthetic rates. This general observation suggests that some complex mechanism may regulate the level of production of foreign C4 metabolism enzymes in C3 plants.  相似文献   

9.
用Flaveria属不同的C_4种和C_3-C_4中间型种杂交,鉴定了杂种F_1 C_4光合CO_2的交换特性。结果表明:F.brownii(C_4)和F.floridana(C_3-C_4)正反交F_1表观光合强度在两亲值之间,有的植株偏向C_4亲本,有的偏向C_3-C_4亲本。利用这种偏向分布可从F_1中选出高光合能力的材料。从F.palmeri(C_4)和F.pubescens(C_3-C_4);F.brownii(C_4)和F.floridana(C_3-C_4);F.palmeri(C_4)和F.floridana(C_3-C_4);F.trineroia(C_4)和F.anomala(C_3-C_4)的正反交,可以看出:用C_4作父本,杂种F_1具有类似C_4种的耐高温的光合特性。从O_2抑光合反应看,F_1接近中亲值,稍偏向C_3-C_4亲本。CO_2补偿点却与C_4亲本相似,不因正反交而发生偏向分布。通过遗传操作,有可能将C_4光合特性传递给C_2植物。  相似文献   

10.
Because photosynthetic rates in C4 plants are the same at normal levels of O2 (c, 20 kPa) and at c, 2 kPa O2 (a conventional test for evaluating photorespiration in C3 plants) it has been thought that C4 photosynthesis is O2 insensitive. However, we have found a dual effect of O2 on the net rate of CO2 assimilation among species representing all three C4 subtypes from both monocots and dicots. The optimum O2 partial pressure for C4 photosynthesis at 30 °C, atmospheric CO2 level, and half full sunlight (1000 μmol quanta m?2 s?1) was about 5–10 kPa. Photosynthesis was inhibited by O2 below or above the optimum partial pressure. Decreasing CO2 levels from ambient levels (32.6 Pa) to 9.3 Pa caused a substantial increase in the degree of inhibition of photosynthesis by supra-optimum levels of O2 and a large decrease in the ratio of quantum yield of CO2 fixation/quantum yield of photosystem II (PSII) measured by chlorophyll a fluorescence. Photosystem II activity, measured from chlorophyll a fluorescence analysis, was not inhibited at levels of O2 that were above the optimum for CO2 assimilation, which is consistent with a compensating, alternative electron How as net CO2 assimilation is inhibited. At suboptimum levels of O2, however, the inhibition of photosynthesis was paralleled by an inhibition of PSII quantum yield, increased state of reduction of quinone A, and decreased efficiency of open PSII centres. These results with different C4 types suggest that inhibition of net CO2 assimilation with increasing O2 partial pressure above the optimum is associated with photorespiration, and that inhibition below the optimum O2 may be caused by a reduced supply of ATP to the C4 cycle as a result of inhibition of its production photochemically.  相似文献   

11.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

12.
Plasma membranes were isolated from green leaves of maize ( Zea mays ), spinach ( Spinacia oleracea ), Setaria viridis and wheat ( Triticum aestivum cv. Omase) by aqueous two-phase partitioning. Carbonic anhydrase activity was detected in these membranes. The activity was inhibited by specific inhibitors for carbonic anhydrase, acetazolamide and ethoxyzolamide. The carbonic anhydrase activity was markedly enhanced by the addition of Triton X-100 to the plasma membranes. The highest activity was obtained in the presence of 0.015% detergent. The activity was scarcely affected when the plasma membrane vesicles were treated with proteinase K, but largely inactivated by the protease after treating the membranes with Triton X-100. These results indicate that carbonic anhydrase faces the cytoplasmic side of the membrane since plasma membranes purified by aqueous two-phase partitioning are tightly sealed vesicles of right side-out orientation (apoplastic side-out). With leaves of C4 plants, 20 to 60% of the total carbonic anhydrase activity was found in the microsomal fraction. By contrast, only 1 to 3% of the activity was found in the microsomal fraction from leaves of C3 plants. Western blot analysis showed that a polypeptide in the spinach plasma membrane cross-reacted with an antiserum raised against spinach chloroplast carbonic anhydrase, and that the molecular mass of the plasma membrane enzyme was higher than that of the chloroplast carbonic anhydrase (28 and 26 kDa, respectively). This indicates the presence of different molecular species of carbonic anhydrase in the chloroplast and the plasma membrane.  相似文献   

13.
The 18O content of CO2 is a powerful tracer of photosynthetic activity at the ecosystem and global scale. Due to oxygen exchange between CO2 and 18O-enriched leaf water and retrodiffusion of most of this CO2 back to the atmosphere, leaves effectively discriminate against 18O during photosynthesis. Discrimination against 18O ( Δ 18O) is expected to be lower in C4 plants because of low ci and hence low retrodiffusing CO2 flux. C4 plants also generally show lower levels of carbonic anhydrase (CA) activities than C3 plants. Low CA may limit the extent of 18O exchange and further reduce Δ 18O. We investigated CO2–H2O isotopic equilibrium in plants with naturally low CA activity, including two C4 (Zea mays, Sorghum bicolor) and one C3 (Phragmites australis) species. The results confirmed experimentally the occurrence of low Δ 18O in C4, as well as in some C3, plants. Variations in CA activity and in the extent of CO2–H2O isotopic equilibrium ( θ eq) estimated from on-line measurements of Δ 18O showed large range of 0–100% isotopic equilibrium ( θ eq = 0–1). This was consistent with direct estimates based on assays of CA activity and measurements of CO2 concentrations and residence times in the leaves. The results demonstrate the potential usefulness of Δ 18O as indicator of CA activity in vivo. Sensitivity tests indicated also that the impact of θ eq < 1 (incomplete isotopic equilibrium) on 18O of atmospheric CO2 can be similar for C3 and C4 plants and in both cases it increases with natural enrichment of 18O in leaf water.  相似文献   

14.
Temperature and vapor pressure deficit (VPD) effects on turfgrass growth are almost always confounded in experiments because VPD commonly is substantially increased in elevated-temperature treatments. The objective of this study as to examine specifically the influence of VPD on transpiration response of four ‘warm-season’ (C4) and four ‘cool-season’ (C3) turfgrasses to increasing VPD at a stable temperature (29.3 ± 1.5 °C). Although transpiration rates were noticeably lower in C4 grasses, transpiration rates increased linearly in response to increasing VPD across the range of 0.8–3.0 kPa. In contrast, transpiration rates of C3 increased sharply with increasing VPD across the range of low VPDs, but became constrained at higher VPDs (>1.35 kPa). Restricted transpiration rate at elevated VPD was most evident in Agrostis palustris and Lolium perenne. Assuming restricted transpiration rates reflect a limitation on leaf CO2 uptake, these results indicate that the commonly observed decline in growth of C3 (and success of C4) grasses at elevated temperature may include a sensitivity to elevated VPD.  相似文献   

15.
Characteristics of photosynthetic gas exchange, photoinhibition and C4 pathway enzyme activities in both flag leaves and lemma were compared between a superhigh-yield rice (Oryza sativa L.) hybrid, Liangyoupeijiu and a traditional rice hybrid, Shanyou63. Liangyoupeijiu had a similar light saturated assimilation rate (Asat) to Shanyou63, but a much higher apparent quantum yield (AQY), carboxylation efficiency (CE) and quantum yield of CO2 fixation (ΦCO2). Liangyoupeijiu also showed a higher resistance to photoinhibition and higher non-radiative energy dissipation associated with the xanthophyll cycle than Shanyou63 when subjected to strong light. In addition, Liangyoupeijiu had higher activities of the C4 pathway enzymes in both flag leaves and lemmas than Shanyou63. These results indicate that higher light and CO2 use efficiency, higher resistance to photoinhibition and C4 pathway in both flag leaf and lemma may contribute to the higher yield of the superhigh-yield rice hybrid, Liangyoupeijiu.  相似文献   

16.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

17.
The distribution pattern of C3 and C4 grasses was studied in eight sites located between 350 m and 2100 m along an altitudinal gradient in Central Argentina. Of 139 taxa fifty-nine are C3 and eighty C4. Species of the C3 tribes (Stipeae, Poeae, Meliceae, Aveneae, Bromeae and Triticeae) and C3 Paniceae species increase in number at higher elevations; only one C3 species was found below 650 m. C4 Aristideae, Pappophoreae, Eragrostideae, Cynodonteae, Andropogoneae and Paniceae increase at lower altitudes. The floristic crossover point is at about 1500 m; the ground cover cross-over point is at about 1000 m. Analysis of the relationships between % C4 species along the gradient and nine climatic and environmental variables showed the highest correlation with July mean temperature, but all temperature variables show highly significant correlations with % C4. Correlation with annual rainfall is lower but also significant. These results are consistent with previous research showing the relative importance of C4 grasses as temperature increases. C3 species make a high contribution to relative grass coverage below the C3/C4 floristic crossover point but are rare below 1000 m.  相似文献   

18.
Two C3 dicotyledonous crops and five C4 monocotyledons treated with three levels of nitrogen were used to evaluate quantitatively the relationship between the allocation of absorbed light energy in PSII and photosynthetic rates (P N) in a warm condition (25–26°C) at four to five levels [200, 400, 800, 1,200 (both C3 and C4) and 2,000 (C4 only) μmol m−2 s−1] of photosynthetic photon flux density (PPFD). For plants of the same type (C3 or C4), there was a linear positive correlation between the fraction of absorbed light energy that was utilized in PSII photochemistry (P) and P N, regardless of the broad range of their photosynthetic rates due to species-specific effect and/or nitrogen application; meanwhile, the fraction of absorbed light energy that was dissipated through non-photochemical quenching (D) showed a negative linear regression with P N for each level of PPFD. The intercept of regression lines between P and P N of C3 and C4 plants decreased, and that between D and P N increased with increasing PPFD. With P and D as the main components of energy dissipation and complementary to each other, the fraction of excess absorbed light energy (E) was unchanged by P N under the same level of PPFD. At the same level of P N, C4 plants had lower P and higher D than C3 plants, due to the fact that C4 plants with little or no photorespiration is considered a limited energy sink for electrons. Nevertheless there was a significant negative linear correlation between D and P when data from both C3 and C4 plants at varied PPFD levels was merged. The slope of regression lines between P and D was 0.85, indicating that in plants of both types, most of the unnecessary absorbed energy (ca. 85%) could dissipate through non-photochemical quenching, when P was inhibited by low P N due to species-specific effect and nitrogen limitation at all levels of illumination used in the experiment.  相似文献   

19.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

20.
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey, and the C4 grass Spartina patens (Ait.) Muhl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections and insect infestations were quantified. Shoot nitrogen concentration ([N]) and water content (WC) were determined. In elevated concentrations of atmospheric CO2, 32% fewer S. olneyi plants were infested by insects, and there was a 37% reduction in the severity of a pathogenic fungal infection, compared with plants grown in ambient CO2 concentrations. S. olneyi also had reduced [N], which correlated positively with the severities of fungal infections and insect infestations. Conversely, S. patens had increased WC but unchanged [N] in elevated concentrations of atmospheric CO2 and the severity of fungal infection increased. Elevated atmospheric CO2 concentration increased or decreased the severity of fungal infection depending on at least two interacting factors, [N] and WC; but it did not change the number of plants that were infected with fungi. In contrast, the major results for insects were that the number of plants infected with insects decreased, and that the amount of tissue that each insect ate also decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号