首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响   总被引:31,自引:0,他引:31  
用不同浓度NaCl和等渗聚乙二醇(PEG 6000)处理芦荟(Aloe vera L.)幼苗,10 d后测定叶片相对生长速率和厚度、叶片中主要有机溶质、无机离子含量及渗透调节能力.结果表明,-0.44、-0.88 MPa NaCl和PEG处理使芦荟叶片的相对生长速率和叶片厚度明显下降,且盐胁迫对幼苗生长的抑制和叶片含水量降低的效应明显高于等渗的水分胁迫,其叶片渗透调节能力随处理渗透势的降低而增加, -0.88 MPa PEG胁迫的芦荟幼苗的渗透调节能力高于等渗盐分胁迫.在主要渗透调节物质可溶性糖、有机酸、K 、Ca2 和Cl-中,-0.88 MPa PEG处理下含量比相同渗透势的NaCl处理下显著增加的是有机溶质,因此推断有机溶质含量高是PEG胁迫下渗透调节能力较强的主要因素.  相似文献   

3.
The seedlings of six cultivars of oil-seed flax (Linum humile Mill.) differing in the extent of adaptation to abiotic stresses (hypo- and hyperthermia, osmotic stress, and salinity) were used to assess hemag-glutination activity and carbohydrate specificity of total lectin preparations extracted from various cell compartments. In the course of adaptation of plants resistant to hyperthermia, osmotic stress and salinity, we observed a considerable rise in the coefficient of activity of membrane lectins, whereas the adaptation to hypothermia elevated the coefficient of activity of cell wall lectins. As to total soluble lectins, the adaptation of flax plants was associated with the changes in the range of their carbohydrate specificity. For instance, following the adaptation to hyperthermia, they were found to bind glucose and glucosamine, to osmotic stress—mannose and xylose, to salinity—galactose, glucose, and glucosamine; after cold resistance was developed, total soluble lectins were found to recognize lactose and fructose. It was concluded that lectins may participate in specific adaptation of flax plants to various abiotic stress factors.  相似文献   

4.
The purpose of this research was to examine whether proline accumulation in leaves of barley under conditions of mild water deficit (PEG — 0.75 MPa imposed on roots) may modify membrane injuries caused by subsequent severe osmotic stress (PEG — 1.6 MPa imposed on leaves). Six-day-old seedlings of four barley genotypes were used in the experiments. Substantial and different proline accumulation was found in the leaves of mild water deficit-stressed plants of the most investigated genotypes. This stress factor caused rather a small decrease in RWC and did not lead to membrane injuries. Severe osmotic stress imposed on leaves caused considerable membrane injuries in all the genotypes investigated. Leaves of plants pre-stressed with mild water deficit and then subjected to severe osmotic stress exhibited about a 50% lower membrane injury than those of not pre-stressed plants. A possible role of proline accumulated in the leaves of pre-stressed plants in the process of alleviating cell membrane injuries in the leaves subsequently exposed to severe water deficit is discussed.  相似文献   

5.
The effects of mild osmotic stress conditions on aquaporin-mediated water transport are not well understood. In the present study, mild osmotic stress treatments with 20 and 50 g L?1 polyethylene glycol 6000 (PEG) in Hoagland’s mineral solution were applied for 3 weeks under controlled environmental conditions to transgenic Populus tremula × Populus alba plants constitutively over-expressing a Populus PIP2;5 aquaporin and compared with the wild-type plants. The PEG treatments resulted in growth reductions and triggered changes in net photosynthesis, transpiration, stomatal conductance and root hydraulic conductivity in the wild-type plants. However, height growth, leaf area, gas exchange, and root hydraulic conductivity were less affected by the PEG treatments in PIP2;5-over-expressing poplar lines. These results suggest that water transport across the PIP2;5 aquaporin is an important process contributing to tolerance of mild osmotic stress in poplar. Greater membrane abundance of PIP2;5 was most likely the factor that was responsible for higher root hydraulic conductivity leading to improved plant water flux and, consequently, greater gas exchange and growth rates under mild osmotic stress conditions. The results also provide evidence for the functional significance of PIP2;5 aquaporin in water transport and its strong link to growth processes in poplar.  相似文献   

6.
Plants may experience environmental stress factors operating in nature either simultaneously or in sequence. In the study, we have acclimated the developing primary leaves of wheat seedlings to high light stress and examined their photosynthetic response to polyethylene glycol (PEG) mediated osmotic stress during different developmental phases including senescence. The high light acclimated leaves show higher level of total carotenoids as compared to their non-acclimated counterparts experiencing osmotic stress during senescence. They also exhibit greater membrane stability as indicated by the measurements of fluorescence polarisation and energy transfer efficiency in photosystem I (PSI) and Photosystem II (PSII). From the data of DCPIP photoreduction and pulse amplitude modulated (PAM) fluorimetry, a similar trend is observed for PSII photochemistry of the leaves experiencing osmotic stress during senescence. Our results may suggest that the stress adaptive potential induced by one stress during development is retained by the leaves and helps to mitigate another stress effect operating in sequence during another developmental phase, namely senescence.  相似文献   

7.
The physiological basis underlying differences in sensitivity of different aged leaves to water stress was investigated in Fragaria virginiana Duchesne. Differential susceptibility of only older leaves to water stress in the field during summer months appeared related to gradients in leaf osmotic potential within the plant and by an age dependency in the ability of leaves to adjust osmotically when challenged by periodic water deficits. Under greenhouse conditions, older leaves senesced invariably during an imposed water stress while control leaves of comparable age and stressed younger leaves remained green. Osmotic potentials of intermediate aged and younger leaves became approximately 1 to 2 bars lower after a single cycle of imposed stress and up to 10 bars lower after two cycles of stress. Pronounced gradients in leaf osmotic potential within individual whole plants were observed following two cycles of water stress that were significantly different from control values. Osmotic adjustment was dependent on leaf age with the greatest capacity for adjustment in the intermediate aged leaves. Loss of osmotic adjustment was rapid upon rewatering with a half-life of 4 days. An irreversible component of adjustment was observed, amounting to about 10% (or 2 bars) of the maximally adjusted state. This irreversible component could be accounted for in part by significant changes in cell size and other anatomical alterations in the leaf that affect cellular osmotic volume, and, hence, cellular water relations.  相似文献   

8.
9.
Development of an efficient and cost-effective doubled haploid production system in flax (Linum usitatissimum L.) is the prerequisite for the application of doubled haploid technology in a practical breeding program. Pre-culture of anthers on a medium containing 15% sucrose for 2–7 days before transfer to the same medium containing 6% sucrose for a total of 28 days culture period significantly increased shoot regeneration for all four genotypes evaluated. Moreover, pre-culture of anthers on medium containing 15% sucrose for 2–7 days was sufficient to dramatically reduce the frequency of shoot regeneration from somatic tissues and thereby to increase the frequency of microspore-derived plants in flax anther culture. Furthermore, replacing 15% sucrose with 6% sucrose and 9% polyethylene glycol (PEG), or 3% sucrose and 12% PEG, in pre-culture medium did not significantly affect callus induction and shoot regeneration. The results indicate that sucrose may act as carbon/energy source as well as an osmotic regulator in flax anther culture. Sucrose as an osmotic regulator may be replaced by a non-metabolizable osmoticum: PEG. The implication of this study in flax anther culture and breeding is discussed.  相似文献   

10.
11.
Grass pea (Lathyrus sativus L.) is a legume crop known from its tolerance to various abiotic stresses, especially drought. In this study, we investigated: (1) the response of grass pea seedlings to osmotic stress generated in vitro by polyethylene glycol (PEG); (2) potential drought acclimatization mechanisms of two polish grass pea cultivars. Grass pea seeds of two cultivars were sown on media containing different PEG concentrations (0, 5.5, 11.0 mM) and cultivated for 14 days in controlled conditions. Plants’ dry matter increased under osmotic stress (regardless of PEG concentration). In turn, the highest dose of PEG caused a reduction in seedling growth in both cultivars. Furthermore, PEG caused the peroxidase activity increase in whole seedlings and catalase (CAT) activity in roots. However, differences between cultivars were noted in: CAT activity in shoots; while phenols and anthocyanin content as well as electrolyte leakage in shoots and roots. In turn, in both tested genotypes, accumulation of proline increased in shoots under osmotic stress. Obtained results indicate that the examined plants, although belonging to the same species, differ in acclimatization processes leading to elevated tolerance to osmotic stress.  相似文献   

12.
卫星搭载亚麻后代中PEG和NaCl抗性系的初步筛选   总被引:8,自引:0,他引:8  
把空间生物学和细胞工程相结合,通过组织培养技术对其离体筛选,得到抗1.2%NaCl和35%PEG的愈伤组织,将所得抗性系愈伤组织在2.0mg/L6-苄基氨基嘌呤、0.5mg/L吲哚乙酸的MS培养基上分化得到完整的植株。抗性系能在胁迫条件下保持高的生长速度和高效的脯氨酸合成能力,表明空间诱变与组织培养相结合有望可成为筛选抗胁迫变异系的有效途径。  相似文献   

13.
Drought stress usually causes a serious yield reduction in wheat production. Silicon (Si) has been reported to be able to alleviate drought stress damage; however, the mechanism is still poorly understood. In this article, the effects of Si (as sodium silicate) on some parameters related to oxidative damage, proline, soluble sugar, and inorganic ions in the leaves of wheat under 20% (w/v) polyethylene glycol (PEG-6000) simulative drought stress are investigated. PEG stress depressed the growth of shoot and root and decreased leaf water potential and chlorophyll concentration. Addition of 1.0 mM Si could partially improve the growth of shoot (but not root) and increase the leaf chlorophyll concentrations of stressed plants. Inclusion of Si in culture solution also maintained leaf water potential of stressed plants at the same level as that of the control plants. PEG stress induced significant accumulation of leaf hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as an increase in electrolyte leakage, which were all decreased by added silicon. These results suggest that stress-induced membrane lipid peroxidation could be partly alleviated by added silicon. Moreover, the results were also supported by the observation that PEG stress-induced decrease in glutathione concentration in the leaves was reversed by added silicon. The proline concentration in the leaves was markedly increased under PEG stress, whereas added silicon partially reversed this. PEG stress decreased the leaf soluble sugar concentration. There were significant negative regressions between proline concentration and both shoot dry weight and leaf chlorophyll concentrations, whereas there were positive regressions between the proline concentration and both H2O2 and MDA concentrations in the leaves, supporting the view that proline accumulation is a symptom of stress damage rather than stress tolerance. Addition of Si obviously increased Si accumulation in the shoot. Analyses of Na, Mg, K, and Ca showed no accumulation of these ions in the shoot (on the basis of per tissue dry weight) under water stress, and added Si even decreased their concentrations. These results suggest that under short-term PEG-induced water stress conditions (1 week), antioxidant defense, rather than osmotic adjustment, contributed to the improved wheat growth by Si.  相似文献   

14.
卫星搭载亚麻后代中PEG和NaCl   总被引:3,自引:0,他引:3  
把空间生物学和细胞工程相结合,通过组织培养技术对其离体筛选,得到抗1.2% NaCl和35% PEG的愈伤组织。将所得抗性系愈伤组织在2.0 mg/L 6-苄基氨基嘌呤、0.5 mg/L吲哚乙酸的MS培养基上分化得到完整的植株。抗性系能在胁迫条件下保持高的生长速度和高效的脯氨酸合成能力。表明空间诱变与组织培养相结合有望可成为筛选抗胁迫变异系的有效途径。  相似文献   

15.
The development of drought tolerant wheat cultivars has been slow due to lack of understanding the diagnostic physiological parameters associated with improved productivity under water stress. We evaluated responses to PEG induced osmotic stress under hydroponics in D-genome synthetic derived and bread wheat germplasm with the main aim to unravel and identify some promising attributes having role in stress tolerances. Genotypes used in this study differed in their morpho-physiological and biochemical attributes. Tolerant genotypes exhibited the ability to ameliorate harmful effects of PEG induced osmotic stress through better osmotic adjustment achieved through substantial relative water content (RWC), lowered osmotic potential, relatively stable root length having maximum water extraction capacity, significant increase in osmoprotectant concentration and relatively enhanced antioxidant activities. The results clearly revealed the importance of synthetic derivatives over check cultivars and conventional wheats in terms of osmotic stress responses. Interestingly, synthetic-derived advanced lines with Aegilops tauschii in its parentage including AWL-02, AWL-04 and AWL-07 proved superior over the best rainfed check cultivar (Wa-01). It was concluded that synthetic-derived wheats has great potential to improve a range of stress adaptive traits. It could, therefore, be recommended to be a useful strategy for allowing modern bread wheat to become adapted to a wider range of environments in future climate change scenarios.  相似文献   

16.
The aim of this work was to examine the ability of ABA and proline to counteract the deleterious effect of water deficit stress on cell membrane injuries. Six-day-old seedlings of two barley genotypes (cv. Aramir, line R567) were treated with ABA (2·10−4 M) or proline (0.1 M) for 24 h, and then subjected to osmotic stress for 24h, by immersing their roots in polyethylene glycol (PEG 6000) solution of osmotic potential of −1.0 MPa and −1.5 MPa or by submerging the leaf pieces in PEG solution of osmotic potential of −1.6 MPa. Pretreatment of plants with ABA and proline caused an increase of free proline level in the leaves. Plants treated with ABA exhibited a lower membrane injury index under water stress conditions than those untreated even when no effect of this hormone on RWC in the leaves of stressed plants was observed. Pretreatment of plants with proline prevented to some extent membrane damage in leaves of the stressed seedlings, but only in the case when stress was imposed to roots. Improvement in water status of leaves was also observed in seedlings pretreatment with proline. The protective effect of both ABA and proline was more pronounced in line R567 that exhibited higher membrane injury under water deficit stress conditions.  相似文献   

17.
We examined the photosynthesis response to osmotic stress in three climber plant species, Pharbitis nil (Linn.) Choisy, Lonicera japonica Thunb, and Parthenocissus tricuspidata (Sieb.et Zucc.) Planch. All climber plants were exposed to osmotic stress induced by polyethylene glycol (PEG) 6000 at 4 levels (slight, moderate, severe osmotic and the control) for 30?days. Photosynthesis response was determined by measuring leaf photosynthesis, chlorophyll fluorescence, carbonic anhydrase activity and stable carbon isotope ratios. P. nil maintained high photosynthetic activity under long-term moderate osmotic stress due to both stable photosystem II photochemical efficiency and high carbonic anhydrase activity. L. japonica maintained high photosynthetic activity under long-term moderate stress due to high carbonic anhydrase activity rather than photosystem II photochemical efficiency. P. tricuspidata tolerated only short-term moderate osmotic stress and long-term slight osmotic stress because its response was mainly stomatal limitation, with the lowest photosynthetic activity and hardly any carbonic anhydrase activity. Carbonic anhydrase activity was inversely correlated with stable carbon isotope ratios. The regulation by carbonic anhydrase was probably the reason for P. nil and L. japonica to tolerate long-term moderate osmotic stress. The selection on the species should consider the differential adaptation mechanism to osmotic stress during the development of drought-resistant plants.  相似文献   

18.
19.
To promote the economic feasibility of Nannochloropsis oculata, efficacy of using polyethylene glycol (PEG) to increase microalgal growth and lipid accumulation was investigated. We first examined the effects of PEG concentrations on microalgal growth using 0–5 % (w/v) PEG-6000, and followed by exploring the effects of PEG molecular weights (400, 600, 2,000, 4,000, 6,000, and 20,000) on microalgal growth, size, as well as on yields of biomass, total lipids, and eicosapentaenoic acid. In addition, the capacity of PEG to reduce the effect of oxygen inhibition on microalgal growth was also investigated to evaluate its adaptability for use in large-scale and closed setting. Our results showed that PEG-induced osmotic stress (Π) in the range of 2.465–2.472 MPa can raise microalgal growth. The PEG with higher molecular weight exhibited greater efficacy of growth promotion but less lipid content under equal concentration. In this study, 0.5 % (w/v) PEG-20000 (Π = 2.466 MPa) remarkably enhanced microalgal growth without interference of intracellular lipid productivity and cellular size, yielding >50 % (w/w) increases in biomass, total lipid, and eicosapentaenoic acid amounts after 7 days that provided the optimal condition for microalgal cultivation. These positive effects possibly resulted from the moderate enhancement of osmotic stress in the medium and stronger chaotrope-like behavior from higher molecular weight PEG. With further verification that 0.5 % (w/v) PEG-20000 enabled to reduce the effect of oxygen inhibition on microalgal growth, the PEG-20000-mediated cultivation offers a feasible means for mass culture of N. oculata in closed setting.  相似文献   

20.
Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号