首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary impact of human Alu repetitive elements   总被引:11,自引:0,他引:11  
Early studies of human Alu retrotransposons focused on their origin, evolution and biological properties, but current focus is shifting toward the effect of Alu elements on evolution of the human genome. Recent analyses indicate that numerous factors have affected the chromosomal distribution of Alu elements over time, including male-driven insertions, deletions and rapid CpG mutations after their retrotransposition. Unequal crossing over between Alu elements can lead to local mutations or to large segmental duplications responsible for genetic diseases and long-term evolutionary changes. Alu elements can also affect human (primate) evolution by introducing alternative splice sites in existing genes. Studying the Alu family in a human genomic context is likely to have general significance for our understanding of the evolutionary impact of other repetitive elements in diverse eukaryotic genomes.  相似文献   

2.
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.  相似文献   

3.
Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.  相似文献   

4.
The genome of the human malaria parasite Plasmodium falciparum is being sequenced by an international consortium. Two of the parasite's 14 chromosomes have been completed and several other chromosomes are nearly finished. Even at this early stage of the project, analysis of the genome sequence has provided promising new leads for drug and vaccine development.  相似文献   

5.
A restriction enzyme gene is often linked to a modification methylase gene the role of which is to protect a recognition site on DNA from breakage by the former. Loss of some restriction-modification gene complexes leads to cell death through restriction breakage in the genome. Their behavior as genomic parasites/symbionts may explain the distribution of restriction sites and clarify certain aspects of bacterial recombination repair and mutagenesis. A comparison of bacterial genomes supports the hypothesis that restriction-modification gene complexes are mobile elements involved in various genome rearrangements and evolution.  相似文献   

6.
The origins and implications of Aluternative splicing   总被引:8,自引:0,他引:8  
Ten percent of the human genome is composed of highly repetitive DNA sequences called Alu elements. It has recently been found that at least 5% of all human alternative exons are derived from Alu elements. Moreover, single nucleotide mutations can convert either alternative or otherwise silent Alu elements into constitutive exons and this can lead to the development of human disease. These results provide new insights into the function and dangers of 'junk DNA' in the human genome.  相似文献   

7.
Comparative analysis of the complete sequences of seven bacterial and three archaeal genomes leads to the first generalizations of emerging genome-based microbiology. Protein sequences are, generally, highly conserved, with ∼70% of the gene products in bacteria and archaea containing ancient conserved regions. In contrast, there is little conservation of genome organization, except for a few essential operons. The most striking conclusions derived by comparison of multiple genomes from phylogenetically distant species are that the number of universally conserved gene families is very small and that multiple events of horizontal gene transfer and genome fusion are major forces in evolution.  相似文献   

8.
The genome of monotremes, like the animals themselves, is unique and strange. The importance of monotremes to genomics depends on their position as the earliest offshoot of the mammalian lineage. Although there has been controversy in the literature over the phylogenetic position of monotremes, this traditional interpretation is now confirmed by recent sequence comparisons. Characterizing the monotreme genome will therefore be important for studying the evolution and organization of the mammalian genome, and the proposal to sequence the platypus genome has been received enthusiastically by the genomics community. Recent investigations of X-chromosome inactivation, genomic imprinting and sex chromosome evolution provide good examples of the power of the monotreme genome to inform us about mammalian genome organization and evolution.  相似文献   

9.
Large scale international activities for systematic conditional mouse mutagenesis, exploiting advances in the sophisticated manipulation of the mouse genome, has established the mouse as the premier organism for developing models of human disease and drug action. Conditional mutagenesis is critical for the elucidation of the gene functions that exert pleiotropic effects in a variety of cell types and tissues throughout the life of the animal. The majority of new mouse mutants are therefore designed as conditional, activated only in a specific tissue (spatial control) and/or life stage (temporal control) through biogenic Cre/loxP technologies. The full power of conditional mutant mice can therefore only be exploited with the availability of well characterized mouse lines expressing Cre-recombinase in tissue, organ and cell type-specific patterns, to allow the creation of somatic mutations in defined genes. This chapter provides an update on the current state of Cre driver mouse lines worldwide, and reviews the available public databases and portals that capture critical details of Cre driver lines such as the efficiency of recombination, cell tissue specificity, or genetic background effects. The continuously changing landscape of these mouse resources reflects the rapid progression of research and development in conditional and inducible mouse mutagenesis.  相似文献   

10.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins.  相似文献   

11.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   

12.
Alu Elements and the Human Genome   总被引:13,自引:0,他引:13  
Rowold DJ  Herrera RJ 《Genetica》2000,108(1):57-72
  相似文献   

13.
Over a third of the human genome consists of interspersed repetitive sequences which are primarily degenerate copies of transposable elements. In the past year, the identities of many of these transposable elements were revealed. The emerging concept is that only three mechanisms of amplification are responsible for the vast majority of interspersed repeats and that with each autonomous element a number of dependent non-autonomous sequences have co-amplified.  相似文献   

14.
MicroRNAs (miRNAs) are small RNA molecules (~ 20–30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.  相似文献   

15.
The families of human endogenous retroviruses (HERVs) are widely distributed in the human genome. Here we examined their distribution and expression. Approximately forty thousand HERV elements including truncated and solitary long terminal repeats (LTRs) were identified. These elements were most dense on chromosomes 4, 20, X, and Y. From an analysis of genomic stability during primate evolution, the 5 cent -LTR of the HERV genome (5 cent LTR - internal HERV - 3 cent LTR) appeared to be more often truncated than the 3 cent -LTR. ESTs derived from normal placenta, skeletal muscle, hypothalamus, and testis gave frequent matches to HERV elements. We present a classification of genes associated with HERV elements according to the hierarchical structure of gene ontology.  相似文献   

16.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over 500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint' of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated from different samples. Here, we explore the utility of these methods by applying them to the identification of members of the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
There is a striking link between increasing age and the incidence of cancer in humans. One of the hallmarks of cancer, genomic instability, has been observed in all types of organisms. In the yeast Saccharomyces cerevisiae, it was recently discovered that during the replicative lifespan, aging cells switch to a state of high genomic instability that persists until they die. In considering these and other recent results, we suggest that accumulation of oxidatively damaged protein in aging cells results in the loss of function of gene products critical for maintaining genome integrity. Determining the identity of these proteins and how they become damaged represents a new challenge for understanding the relationship between age and genetic instability.  相似文献   

18.
A THE-1 sequence in intron 7 of the human dystrophin gene has been found to represent a new subfamily of THE-1 elements. The sequence is closely related to the MstII family of repetitive sequences and is more like single-copy sequences found in the galago genome than any other THE-1 sequence previously reported. This new THE-1 sequence has been compared with two other complete THE-1 sequences and three related long-terminal repeat elements that we have previously found in intron 7 of the dystrophin gene, and with members of the same family from elsewhere in the primate genome. Parsimony and deletion analysis show that the cluster of THE-1 sequences in intron 7 of the dystrophin gene has arisen from at least three individual insertion events, rather than from the insertion and duplication of a single progenitor sequence. Correspondence to: G.B. Petersen  相似文献   

19.
20.
The release of the complete genome sequence of the yeast Saccharomyces cerevisiae has ushered in a new phase of genome research in which sequence function will be assigned. The goal is to determine the biological function of each of the >6,000 open reading frames in the yeast genome. Innovative approaches have been developed that exploit the sequence data and yield information about gene expression levels, protein levels, subcellular localization and gene function for the entire genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号