首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Changes in insulin-stimulated glucose metabolism were studied in young and aged subjects, subjects with impaired glucose tolerance, and patients with NIDDM by means of the glucose clamp technique. The diabetic group includes obese and non-obese patients treated without insulin and non-obese patients treated with insulin. The glucose disposal rate (GDR) was decreased in aged subjects (5.8 +/- 0.4 mg/kg/min) compared with young controls (7.4 +/- 0.3 mg/kg/min). In patients with IGT, it was further decreased to 3.6 +/- 0.5 mg/kg/min, which was comparable to the rate in NIDDM without insulin treatment (3.3 +/- 0.4 mg/kg/min). There were no differences in the GDR between obese (3.0 +/- 0.3 mg/kg/min) and non-obese (3.4 +/- 0.6 mg/kg/min) diabetic patients. In insulin-treated diabetic patients, GDR ranged widely, but the mean value was partially normalized (5.2 +/- 0.9 mg/kg/min). In the diabetic group, no correlation was observed between fasting blood glucose and GDR. These results suggest that in the course of developing NIDDM, a decrease in insulin-stimulated glucose uptake precedes a rise in fasting blood glucose. Thus, as previously reported for Caucasian NIDDM patients, resistance to insulin-stimulated glucose uptake may be one of the basic defects in Japanese patients with NIDDM. The degree of glycemia, however, is not directly related to the magnitude of the defect in insulin action.  相似文献   

4.
5.
In chick embryo fibroblast cultures the 15- to 30-fold enhancement of D-glucose uptake observed when cells are starved of glucose for 24 hours is not duplicated for derivatives of glucose that compete effectively for uptake and have generally been considered to use the same carrier. 2-deoxy-D-glucose, D-mannose, D-galactose and D-glucosamine are derepressed progressively less sharply in that order with glucosamine uptake never more than doubled by starvation. D-glucose at a concentration of 5.5 mM in the 24-hour conditioning medium is a strong "repressor" resulting in low "transport" behavior for each of the five sugars cited. D-glucosamine is equally effective at the same concentration. A 10-fold reduction in the concentration of glucosamine (0.55 mM) allows for the escape from repression of mannose, glucose, and deoxyglucose uptake while the others remain repressed. Mannose uptake escapes as well when the glucose concentration in the "conditioning" medium is similarly reduced. Under certain conditions of starvation and cell density dramatic effects of supplemental stimulation by insulin can be achieved. Insulin withdrawal interrupts the supplemental stimulation process. Cycloheximide, actinomycin D and cordycepin block both non-insulin and insulin-induced derepression. Short exposure (15-30 minutes) of 24-hour starved cells to glucose (5.5 mM) reduces glucose sharply but does not affect 3-O-methyl glucose uptake. If the exposure is to 2-deoxyglucose (5.5 mM) further derepression of glucose uptake results.  相似文献   

6.
Sensors for the simultaneous determinations of sucrose and glucose, lactose and glucose, and starch and glucose were prepared by a combination of the enzyme system shown below and an oxygen electrode: The mechanism for separating the substrates with the proposed sensors is based on the time lag arising from reaction and diffusion. Invertase, beta-galactosidase, amyloglucosidase, mutarotase, and glucose oxidase were covalently immobilized on triacetyl cellulose membranes containing 1,8-diamino-4-aminomethyloctane. A glucose oxidase membrane, mutarotase membrane, three sheets of triacetyl cellulose membranes, and invertase, or beta-galactosidase or amyloglucosidase membrane were placed in that order on the tip of the oxygen electrode. Calibration curves for sucrose, lactose, and starch were linear up to 40 mM, 60-180 mM, and 10%, respectively. The simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose was possible when the amount of glucose coexised was in the range of 2-16% sucrose, 2.8-8.3% lactose, or 0.1-1% starch. The relative errors were +/-4% for sucrose and +/-3% for lactose in 100 assays. The starch sensor was reused only five times. Each enzyme membrane was fairly stable for more than 10 days.  相似文献   

7.
8.
Biotin and glucose metabolism   总被引:2,自引:0,他引:2  
  相似文献   

9.
Delhanty PJ  van der Lely AJ 《Peptides》2011,32(11):2309-2318
Ghrelin plays an important physiological role in modulating GH secretion, insulin secretion and glucose metabolism. Ghrelin has direct effects on pancreatic islet function. Also, ghrelin is part of a mechanism that integrates the physiological response to fasting. However, pharmacologic studies indicate the important obesogenic/diabetogenic properties of ghrelin. This is very likely of physiological relevance, deriving from a requirement to protect against seasonal periods of food scarcity by building energy reserves, predominantly in the form of fat. Available data indicate the potential of ghrelin blockade as a means to prevent its diabetogenic effects. Several studies indicate a negative correlation between ghrelin levels and the incidence of type 2 diabetes and insulin resistance. However, it is unclear if low ghrelin levels are a risk factor or a compensatory response. Direct antagonism of the receptor does not always have the desired effects, however, since it can cause increased body weight gain. Pharmacological suppression of the ghrelin/des-acyl ghrelin ratio by treatment with des-acyl ghrelin may also be a viable alternative approach which appears to improve insulin sensitivity. A promising recently developed approach appears to be through the blockade of GOAT activity, although the longer term effects of this treatment remain to be investigated.  相似文献   

10.
细胞骨架与血糖调节   总被引:4,自引:0,他引:4  
张永伟  刘卓  左瑾  孟雁  方福德 《生命科学》2005,17(2):159-164
细胞骨架由微丝、微管和中间丝构成,参与血糖调节这一复杂的生理过程,在胰岛素分泌、胰岛素功能和糖代谢相关酶类的细胞内分布等方面具有重要的作用。本文将从以上三个方面,对细胞骨架与血糖调节的关系加以综述。  相似文献   

11.
12.
13.
Recent reports have shown that immediately after an acute bout of exercise the glucose transport system of rat skeletal muscle plasma membranes is characterized by an increase in both glucose transporter number and intrinsic activity. To determine the duration of the exercise response we examined the time course of these changes after completion of a single bout of exercise. Male rats were exercised on a treadmill for 1 h (20 m/min, 10% grade) or allowed to remain sedentary. Rats were killed either immediately or 0.5 or 2 h after exercise, and red gastrocnemius muscle was used for the preparation of plasma membranes. Plasma membrane glucose transporter number was elevated 1.8- and 1.6-fold immediately and 30 min after exercise, although facilitated D-glucose transport in plasma membrane vesicles was elevated 4- and 1.8-fold immediately and 30 min after exercise, respectively. By 2 h after exercise both glucose transporter number and transport activity had returned to nonexercised control values. Additional experiments measuring glucose uptake in perfused hindquarter muscle produced similar results. We conclude that the reversal of the increase in glucose uptake by hindquarter skeletal muscle after exercise is correlated with a reversal of the increase in the glucose transporter number and activity in the plasma membrane. The time course of the transport-to-transporter ratio suggests that the intrinsic activity response reverses more rapidly than that involving transporter number.  相似文献   

14.
《Biosensors》1986,2(2):71-87
Glucose dehydrogenase (GDH), one of the recently discovered NAD(P)+-independent ‘quinoprotein’ class of oxidoreductase enzymes, was purified from Acinetobacter calcoaceticus LMD 79.41 and immobilised on a 1,1'-dimethylferrocene-modified graphite foil electrode.The second-order rate constant (ks) for the transfer of electrons between GDH and ferrocenemonocarboxylic acid (FMCA) in a homogeneous system, determined using direct current (DC) cyclic voltammetry, was found to be 9.4 × 106 litres mol−1 s−1. This value of ks for GDH was more than 40 times greater than that for the flavoprotein glucose oxidase (GOD) under identical conditions. Such high catalytic activities were also observed when GDH was immobilised in the presence of an insoluble ferrocene derivative; a biosensor based on GDH was found to produce more than twice the current density of similar GOD-based electrodes. The steady-state current produced by the GDH-based electrode was limited by the enzymic reaction since methods which increased the enzyme loadings elevated the upper limit of glucose detection from 5 mM to 15 mM.The temperature, pH, stability and response characteristics of the GDH-based glucose sensor illustrate its potential usefulness for a variety of practical applications. In particular, the high catalytic activity and oxygen insensitivity of this biosensor make it suitable for in vivo blood glucose monitoring in the management of diabetes.  相似文献   

15.

Aim

Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D). It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or T2D.

Methods

Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35), IGT (n = 45), or NGT (n = 43). Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL)-6, retinol-binding protein 4 (RBP4), monocyte chemoattractant protein (MCP)-1, vaspin, progranulin, and soluble leptin receptor (sOBR) were measured by ELISAs.

Results

Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group.

Conclusion

Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.  相似文献   

16.

Background

Quantitative evaluation of insulin regulation on plasma glucose and free fatty acid (FFA) in response to external glucose challenge is clinically important to assess the development of insulin resistance (World J Diabetes 1:36–47, 2010). Mathematical minimal models (MMs) based on insulin modified frequently-sampled intravenous glucose tolerance tests (IM-FSIGT) are widely applied to ascertain an insulin sensitivity index (IEEE Rev Biomed Eng 2:54–96, 2009). Furthermore, it is important to investigate insulin regulation on glucose and FFA in postprandial state as a normal physiological condition. A simple way to calculate the appearance rate (Ra) of glucose and FFA would be especially helpful to evaluate glucose and FFA kinetics for clinical applications.

Methods

A new MM is developed to simulate the insulin modulation of plasma glucose and FFA, combining IM-FSIGT with a mixed meal tolerance test (MT). A novel simple functional form for the appearance rate (Ra) of glucose or FFA in the MT is developed. Model results are compared with two other models for data obtained from 28 non-diabetic women (13 African American, 15 white).

Results

The new functional form for Ra of glucose is an acceptable empirical approximation to the experimental Ra for a subset of individuals. When both glucose and FFA are included in FSIGT and MT, the new model is preferred using the Bayes Information Criterion (BIC).

Conclusions

Model simulations show that the new MM allows consistent application to both IM-FSIGT and MT data, balancing model complexity and data fitting. While the appearance of glucose in the circulation has an important effect on FFA kinetics in MT, the rate of appearance of FFA can be neglected for the time-period modeled.
  相似文献   

17.
Although glucose tolerance and skeletal muscle glucose uptake are markedly improved by cold exposure in animals, little is known about such responses in humans. This study used two variations of a glucose tolerance test (GTT) to investigate changes in carbohydrate metabolism in healthy males during nude exposure to cold. In experiment 1, an oral GTT was performed in the cold and in the warm (3 h at 10 or 29 degrees C). To bypass the gastrointestinal tract, and to suppress hepatic glucose output, a second experiment was carried out as described above, using an intravenous GTT. Even though cold exposure raised metabolic rate greater than 2.5 times, plasma glucose and insulin responses to an oral GTT remained unaltered. In contrast, cold exposure reduced the entire plasma glucose profile as a function of time during the intravenous GTT (P less than 0.05), as plasma glucose was returned to basal levels within 1 h in comparison to a full 2 h in the warm, despite low insulin levels. The results of the intravenous GTT demonstrate that even with low insulin levels, carbohydrate metabolism is increased in cold-exposed males. This effect could be masked in the oral GTT by gastrointestinal factors and a high hepatic glucose output. Cold exposure may enhance insulin sensitivity and/or responsiveness for glucose uptake, mainly in shivering skeletal muscles.  相似文献   

18.
Polydopamine (Pdop) has recently been shown to adsorb to a wide variety of surfaces and serves as an adhesion layer to immobilize biological molecules. In this work, the multifunctional carbon nanotube (CNT) composites were prepared though the oxidation of dopamine at room temperature and subsequent electroless silver deposition by mildly stirring. The stable immobilization and direct electron transfer of glucose oxidase were achieved on the composite film modified glassy carbon electrode. The resulting electrode gave a well-defined redox peaks with a formal potential of about −482 mV (vs. SCE) in pH 7.0 buffer. The electron transfer rate constant was estimated to be 3.6 s−1, due to the combined contribution of Pdop, CNTs and Ag nanoparticles with the help of Nafion. Furthermore, the method for detecting of glucose was proposed based on the decrease of oxygen caused by the enzyme-catalyzed reaction between glucose oxidase (GOD) and glucose. The linear response to glucose ranging from 50.0 μM to 1.1 mM (R2 = 0.9958), with a calculated detection limit of 17.0 μM at a signal-to-noise ratio of 3. The low calculated apparent Michaelis–Menten constant was 5.46 mM, implying the high enzymatic activity and affinity of immobilized GOD for glucose. It can reasonably be expected that this observation might hold true for other noble metal nanostructure-electroactive protein systems, providing a promising platform for the development of biosensors and biofuel cells.  相似文献   

19.
20.
The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号