首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of polyamines during chromosome condensation of mammalian cells   总被引:2,自引:0,他引:2  
The objective of the present study was to investigate the role of polyamines in the process of chromosome condensation. The phenomenon of premature chromosome condensation (PCC) involving fusion between mitotic and interphase cells was used as the assay system. The factors present in the mitotic cells would bring about the breakdown of the nuclear membrane and condensation of the interphase chromatin into chromosomes, similar to that which occurs during the initiation of mitosis. Alpha-difluoromethyl ornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase was used to deplete both mitotic and interphase cells of polyamines. The results indicate that the polyamine depleted mitotic cells have a diminished ability to induce PCC. This inhibition could easily be reversed by exogenous addition of polyamines at the time of fusion. Furthermore, exogenously added polyamines hastened the entry of exponentially growing cells into mitosis. These observations suggest an essential role for polyamines during the process of chromosome condensation of mammalian cells.  相似文献   

2.
3.
  1. Download : Download high-res image (415KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
6.
Premature chromosome condensation and cell cycle analysis.   总被引:3,自引:0,他引:3  
The application of the phenomenon of premature chromosome condensation for cell cycle analysis in HeLa and CHO cells has been examined. Random populations of HeLa and CHO cells pulse labelled with H3-TdR were separately fused with mitotic HeLa cells using U.V. inactivated Sendai virus. The resulting prematurely condensed chromosomes (PCC) were scored and classified into G1, S and G2-PCC on the basis of both morphological and autoradiographic data, The results of this study indicated that the G1, S and G2 phase cells are equally susceptible to virus-induced fusion with mitotic cells and subsequent induction into PCC. Hence the PCC method for cell cycle analysis is both practical and accurate. This study also revealed that the process of chromosome decondensation initiated during the telophase of mitosis continues throughout the G1 period reaching an ultimate state of decondensation by the end of G1, at which point the fusion of such cells with those in mitosis yield PCC with the most diffused morphology instead of the discrete single stranded structures characteristic of early G1-PCC. Thus, the decondensation of chromatin during G1 appears to be a prerequisite for the subsequent initiation of DNA synthesis.  相似文献   

7.
8.
9.
10.
During the eukaryotic cell cycle, chromatin undergoes several conformational changes, which are believed to play key roles in gene expression regulation during interphase, and in genome replication and division during mitosis. In this paper, we propose a scenario for chromatin structural reorganization during mitosis, which bridges all the different scales involved in chromatin architecture, from nucleosomes to chromatin loops. We build a model for chromatin, based on available data, taking into account both physical and topological constraints DNA has to deal with. Our results suggest that the mitotic chromosome condensation/decondensation process is induced by a structural change at the level of the nucleosome itself.  相似文献   

11.
Chromatin folding in the interphase nucleus is not known. We compared the pattern of chromatin condensation in Indian muntjac, Chinese hamster ovary, murine pre B, and K562 human erythroleukemia cells during the cell cycle. Fluorescent microscopy showed that chromosome condensation follows a general pathway. Synchronized cells were reversibly permeabilized and used to isolate interphase chromatin structures. Based on their structures two major categories of intermediates were distinguished: (1) decondensed chromatin and (2) condensed chromosomal forms. (1) Chromatin forms were found between the G1 and mid-S phase involving veil-like, supercoiled, fibrous, ribboned structures; (2) condensing chromosomal forms appeared in the late-S, G2, and M phase, including strings, chromatin bodies, elongated pre-chromosomes, pre-condensed chromosomes, and metaphase chromosomes. Results demonstrate that interphase chromosomes are clustered in domains; condensing interphase chromosomes are linearly arranged. Our results raise questions related to telomer sequences and to the chemical nature of chromosome connectivity.  相似文献   

12.
13.
14.
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.  相似文献   

15.
Li Y  Zhang ZW 《生理科学进展》1997,28(4):317-321
神经末梢突触囊泡循环包括锚靠、出胞、入胞及囊泡再生等步骤,由囊泡、轴浆及突触前膜的多种蛋白质的级联反应介导,其关键步骤的分子模型的确立,为进一步了解神经系统高级活动奠定了基础。  相似文献   

16.
17.
mRNA的可变剪接是指一个单一的mRNA前体(pre-mRNA)经过不同的剪接加工方式生成多种mRNA变异体(variants)的过程,这些变异体最终可以编码合成具有不同结构和功能的蛋白质。在过去的10多年中,大量数据表明,可变剪接是增加转录组和蛋白质组多样性的重要资源,也是调控哺乳动物细胞基因表达的重要步骤。可变剪接具有高度的组织与发育阶段特异性,并受到外界信号的控制。剪接调控的紊乱与疾病的发生发展密切相关。该文将对哺乳动物细胞mRNA剪接调控的分子机制进行阐述。  相似文献   

18.
A theoretical method for computer modeling of DNA condensation caused by ligand binding is developed. In the method, starting (s) and condensed (c) states are characterized by different free energies for ligand free DNA (F(s) and F(c) respectively), ligand binding constants (K(s) and K(c)) and stoichiometry dependent parameters (c(sm) and c(cm) - maximum relative concentration of bound ligands (per base pair) for starting and condensed state respectively). The method allows computation of the dependence of the degree of condensation (the fraction of condensed DNA molecules) on ligand concentration. Calculations demonstrate that condensation transition occurs under an increase in ligand concentration if F(s) < F(c) (i.e. S(sc) = exp [- (F(c) - F(s)) / (RT)], the equilibrium constant of the s-c transition, is low (S(sc) < 1)) and K(s) < K(c). It was also found that condensation is followed by decondensation at high ligand concentration if the condensed DNA state provides the number of sites for ligand binding less than the starting state (c(sm) > c(cm)). A similar condensation-decondensation effect was found in recent experimental studies. We propose its simple explanation.  相似文献   

19.
Recent advances in genomic sequencing of multiple organisms have fostered significant advances in our understanding of the evolution of the sex chromosomes. The integration of this newly available sequence information with functional data has facilitated a considerable refinement of our conceptual framework of the forces driving this evolution. Here we address multiple functional constraints that were encountered in the evolution of the X chromosome and the impact that this evolutionary history has had on its modern behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号