首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lad is an SH2 domain-containing adaptor protein that binds MEK kinase 2 (MEKK2), a mitogen-activated protein kinase (MAPK) kinase kinase for the extracellular signal-regulated kinase 5 (ERK5) and JNK pathways. Lad and MEKK2 are in a complex in resting cells. Antisense knockdown of Lad expression and targeted gene disruption of MEKK2 expression results in loss of epidermal growth factor (EGF) and stress stimuli-induced activation of ERK5. Activation of MEKK2 and the ERK5 pathway by EGF and stress stimuli is dependent on Src kinase activity. The Lad-binding motif is encoded within amino acids 228 to 282 in the N terminus of MEKK2, and expression of this motif blocks Lad-MEKK2 interaction, resulting in inhibition of Src-dependent activation of MEKK2 and ERK5. JNK activation by EGF is similarly inhibited by loss of Lad or MEKK2 expression and by blocking the interaction of MEKK2 and Lad. Our studies demonstrate that Src kinase activity is required for ERK5 activation in response to EGF, MEKK2 expression is required for ERK5 activation by Src, Lad and MEKK2 association is required for Src activation of ERK5, and EGF and Src stimulation of ERK5-regulated MEF2-dependent promoter activity requires a functional Lad-MEKK2 signaling complex.  相似文献   

2.
In this study, we demonstrated that the specific inhibitors of the Na+/K+/Cl- cotransporter (NKCC1), bumetanide and furosemide, inhibited extracellular regulated kinase (ERK) phosphorylation in Balb/c 3T3 fibroblasts, stimulated with a variety of mitogens. In addition to fibroblast growth factor (FGF) shown before, the various mitogens tested in the present study (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), insulin, thrombin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)). Enter, the Ras/Raf/MEK/ERK cascade via different growth factors receptors and through one of the two main routes. The results of the present study provide evidence that have led us to conclude that the target protein which is controlled by the Na+/K+/Cl- cotransporter, is downstream of tyrosine kinase receptors, as well as of the G-protein-coupled receptor (GPCR). Several additional lines of evidence supported the above conclusion: (i) furosemide inhibits phosphorylation of MAPK kinase (MEK) induced by receptor tyrosine kinase (RTK) ligands, such as PDGF, FGF, and EGF. (ii) Furosemide also inhibited ERK phosphorylation, induced by thrombin, a GPCR. (iii) Furosemide inhibited MEK and ERK phosphorylation even when ERK phosphorylation was induced by direct activation of protein kinase C (PKC) by TPA, which bypasses early steps of the mitogenic cascade. In addition, we found that furosemide did not affect PKC phosphorylation induced directly by TPA. Taken together, the results of the present study indicate that the signal transduction protein, controlled by the Na+/K+/Cl- cotransporter, must be downstream of the PKC, and at/or upstream to MEK in the Ras/Raf/MEK/ERK cascade.  相似文献   

3.
4.
Cell shape plays a role in cell growth, differentiation, and death. Herein, we used the hepatocyte, a normal, highly differentiated cell characterized by a long G1 phase, to understand the mechanisms that link cell shape to growth. First, evidence was provided that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) cascade is a key transduction pathway controlling the hepatocyte morphology. MEK2/ERK2 activation in early G1 phase did not lead to cell proliferation but induced cell shape spreading and demonstration was provided that this MAPK-dependent spreading was required for reaching G1/S transition and DNA replication. Moreover, epidermal growth factor (EGF) was found to control this morphogenic signal in addition to its mitogenic effect. Thus, blockade of cell spreading by cytochalasin D or PD98059 treatment resulted in inhibition of EGF-dependent DNA replication. Our data led us to assess the first third of G1, is exclusively devoted to the growth factor-dependent morphogenic events, whereas the mitogenic signal occurred at only approximately mid-G1 phase. Moreover, these two growth factor-related sequential signaling events involved successively activation of MEK2-ERK2 and then MEK1/2-ERK1/2 isoforms. In addition, we demonstrated that inhibition of extracellular matrix receptor, such as integrin beta1 subunit, leads to cell arrest in G1, whereas EGF was found to up-regulated integrin beta1 and fibronectin in a MEK-ERK-dependent manner. This process in relation to cytoskeletal reorganization could induce hepatocyte spreading, making them permissive for DNA replication. Our results provide new insight into the mechanisms by which a growth factor can temporally control dual morphogenic and mitogenic signals during the G1 phase.  相似文献   

5.
6.
In several neuronal cell systems, fibroblast-derived growth factor (FGF) and nerve growth factor (NGF) act as neurogenic agents, whereas epidermal growth factor (EGF) acts as a mitogen. The mechanisms responsible for these different cellular fates are unclear. We report here that although FGF, NGF, and EGF all activate mitogen-activated protein (MAP) kinase (extracellular signal-related kinase [ERK]) in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells, the activation of ERK by the neurogenic agents FGF and NGF is dependent upon protein kinase Cdelta (PKCdelta), whereas ERK activation in response to the mitogenic EGF is independent of PKCdelta. Antisense PKCdelta oligonucleotides or the PKCdelta-specific inhibitor rottlerin inhibited FGF- and NGF-induced, but not EGF-induced, ERK activation. In contrast, EGF-induced ERK activation was inhibited by the phosphatidylinositol-3-kinase inhibitor wortmannin, which had no effect upon FGF-induced ERK activation. Rottlerin also inhibited the activation of MAP kinase kinase (MEK) in response to activated Raf, but had no effect upon c-Raf activity or ERK activation by activated MEK. These results indicate that PKCdelta functions either downstream from or in parallel with c-Raf, but upstream of MEK. Inhibition of PKCdelta also blocked neurite outgrowth induced by FGF and NGF in PC12 cells and by activated Raf in H19-7 cells, indicating a role for PKCdelta in the neurogenic effects of FGF, NGF, and Raf. Interestingly, the PKCdelta requirement is apparently cell type specific, since FGF-induced ERK activation was independent of PKCdelta in NIH 3T3 murine fibroblasts, in which FGF is a mitogen. These data demonstrate that PKCdelta contributes to growth factor specificity and response in neuronal cells and may also promote cell-type-specific differences in growth factor signaling.  相似文献   

7.
In response to epidermal growth factor (EGF), the mitogen-activated protein kinase ERK2 translocates into the nucleus. To probe the mechanisms regulating the subcellular localization of ERK2, we used live cell imaging to examine the interaction between MEK1 and ERK2. Fluorescence resonance energy transfer (FRET) studies show that MEK1 and ERK2 directly interact and demonstrate that this interaction in the cytoplasm is largely responsible for cytoplasmic retention of ERK2. Stimulation with EGF caused loss of FRET as ERK separated from MEK and moved into the nucleus. FRET was recovered as ERK returned to the cytosol, indicating ERK reassociation with MEK in the cytoplasm. The EGF-induced transit of ERK through the nucleus was complete within 20 min, and there was no significant movement of MEK into the nucleus. Fluorescence recovery after photobleaching experiments was used to assess the rate of movement of MEK and ERK. The steady-state rate of ERK entry into the nucleus in resting cells was energy-independent and greater than the rate of ERK entry upon EGF stimulation. This suggests that the rate constant for ERK transport across the nuclear membrane is not limiting nuclear entry. Thus, we suggest that the movement of ERK into and out of the nucleus in response to agonist occurs primarily by diffusion and is controlled by interactions with binding partners in the cytosol and nucleus. No evidence of ERK dimerization was detected by FRET methods; the kinetics for nucleocytoplasmic transport were unaffected by mutations in the ERK putative dimerization domain.  相似文献   

8.
Exercise increases glucose transport in muscle by activating 5'-AMP-activated protein kinase (AMPK), but subsequent events are unclear. Presently, we examined the possibility that AMPK increases glucose transport through atypical protein kinase Cs (aPKCs) by activating proline-rich tyrosine kinase-2 (PYK2), ERK pathway components, and phospholipase D (PLD). In mice, treadmill exercise rapidly activated ERK and aPKCs in mouse vastus lateralis muscles. In rat extensor digitorum longus (EDL) muscles, (a) AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-d-riboside (AICAR), activated PYK2, ERK and aPKCs; (b) effects of AICAR on ERK and aPKCs were blocked by tyrosine kinase inhibitor, genistein, and MEK1 inhibitor, PD98059; and (c) effects of AICAR on aPKCs and 2-deoxyglucose (2-DOG) uptake were inhibited by genistein, PD98059, and PLD-inhibitor, 1-butanol. Similarly, in L6 myotubes, (a) AICAR activated PYK2, ERK, PLD, and aPKCs; (b) effects of AICAR on ERK were inhibited by genistein, PD98059, and expression of dominant-negative PYK2; (c) effects of AICAR on PLD were inhibited by MEK1 inhibitor UO126; (d) effects of AICAR on aPKCs were inhibited by genistein, PD98059, 1-butanol, and expression of dominant-negative forms of PYK2, GRB2, SOS, RAS, RAF, and ERK; and (e) effects of AICAR on 2DOG uptake/GLUT4 translocation were inhibited by genistein, PD98059, UO126, 1-butanol, cell-permeable myristoylated PKC-zeta pseudosubstrate, and expression of kinase-inactive RAF, ERK, and PKC-zeta. AMPK activator dinitrophenol had effects on ERK, aPKCs, and 2-DOG uptake similar to those of AICAR. Our findings suggest that effects of exercise on glucose transport that are dependent on AMPK are mediated via PYK2, the ERK pathway, PLD, and aPKCs.  相似文献   

9.
Epidermal growth factor induction of c-jun expression requires ATF1 and MEF2 sites in the c-jun promoter. We find that activation of the c-jun promoter through the ATF1 site requires phosphorylation of ATF1 at serine 63. A serine 63 to alanine mutation of ATF1 acts to block epidermal growth factor (EGF) induction of a transfected c-jun gene. ATF1 can be phosphorylated by mitogen- and stress-activated protein kinase 1 (MSK1), which is activated by EGF and ERK1/2. Kinase-dead MSK1 mutants blocked EGF induction of a transfected c-jun gene suggesting that MSK1 or a similar family member is required for induced c-jun expression. Use of the MEK1 inhibitor U0126 and dominant negative MEK1 further showed that MSK1 activation and c-jun induction require the ERK pathway. In contrast, a JNK inhibitor blocked EGF induction of c-jun expression but not ATF1 phosphorylation. These results show that the two MAPK pathways, ERK and JNK, are required for EGF-induced c-jun expression and that the ERK pathway acts through downstream phosphorylation of ATF1.  相似文献   

10.
The Phox and Bem1p (PB1) domain constitutes a recently recognized protein-protein interaction domain found in the atypical protein kinase C (aPKC) isoenzymes, lambda/iota- and zeta PKC; members of mitogen-activated protein kinase (MAPK) modules like MEK5, MEKK2, and MEKK3; and in several scaffold proteins involved in cellular signaling. Among the last group, p62 and Par6 (partitioning-defective 6) are involved in coupling the aPKCs to signaling pathways involved in cell survival, growth control, and cell polarity. By mutation analyses and molecular modeling, we have identified critical residues at the interaction surfaces of the PB1 domains of aPKCs and p62. A basic charge cluster interacts with an acidic loop and helix both in p62 oligomerization and in the aPKC-p62 interaction. Subsequently, we determined the abilities of mammalian PB1 domain proteins to form heteromeric and homomeric complexes mediated by this domain. We report several novel interactions within this family. An interaction between the cell polarity scaffold protein Par6 and MEK5 was found. Furthermore, p62 interacts both with MEK5 and NBR1 in addition to the aPKCs. Evidence for involvement of p62 in MEK5-ERK5 signaling is presented.  相似文献   

11.
Neurotensin (NT) and epidermal growth factor (EGF) induced rapid extracellular-regulated protein kinase (ERK) activation through different signaling pathways in the K-Ras mutated human pancreatic carcinoma cell lines PANC-1 and MIA PaCa-2. NT stimulated ERK activation via a protein kinase C (PKC)-dependent (but EGF receptor-independent) pathway in PANC-1 and MIA PaCa-2 cells, whereas EGF promoted ERK activation through a PKC-independent pathway in these cells. Concomitant stimulation of these cells with NT and EGF induced a striking increase in the duration of ERK pathway activation as compared with that obtained in cells treated with each agonist alone. Stimulation with NT + EGF promoted synergistic stimulation of DNA synthesis and anchorage-independent growth. Addition of the MEK inhibitor U0126, either prior to stimulation with NT + EGF or 2 h after stimulation with NT + EGF prevented the synergistic increase in DNA synthesis and suppressed the sustained phase of ERK activation. Furthermore, treatment with the selective PKC inhibitor GF-1 converted the sustained ERK activation in response to NT and EGF into a transient signal and also abrogated the synergistic increase in DNA synthesis. Collectively, our results suggest that the sustained phase of ERK signaling mediates the synergistic effects of NT and EGF on DNA synthesis in pancreatic cancer cells.  相似文献   

12.
Although mitogenic and differentiating factors often activate a number of common signaling pathways, the mechanisms leading to their distinct cellular outcomes have not been elucidated. In a previous report, we demonstrated that mitogen-activated protein (MAP) kinase (ERK) activation by the neurogenic agents fibroblast growth factor (FGF) and nerve growth factor is dependent on protein kinase Cdelta (PKCdelta), whereas MAP kinase activation in response to the mitogen epidermal growth factor (EGF) is independent of PKCdelta in rat hippocampal (H19-7) and pheochromocytoma (PC12) cells. We now show that EGF activates MAP kinase through a PKCzeta-dependent pathway involving phosphatidylinositol 3-kinase and PDK1 in H19-7 cells. PKCzeta, like PKCdelta, acts upstream of MEK, and PKCzeta can potentiate Raf-1 activation by EGF. Inhibition of PKCzeta also blocks EGF-induced DNA synthesis as monitored by bromodeoxyuridine incorporation in H19-7 cells. Finally, in embryonic rat brain hippocampal cell cultures, inhibitors of PKCzeta or PKCdelta suppress MAP kinase activation by EGF or FGF, respectively, indicating that these factors activate distinct signaling pathways in primary as well as immortalized neural cells. Taken together, these results implicate different PKC isoforms as determinants of growth factor signaling specificity within the same cell. Furthermore, these data provide a mechanism whereby different growth factors can differentially activate a common signaling intermediate and thereby generate biological diversity.  相似文献   

13.
Big mitogen-activated protein (MAP) kinase (BMK1), also known as ERK5, is a member of the MAP kinase family whose cellular activity is elevated in response to growth factors, oxidative stress, and hyperosmolar conditions. Previous studies have identified MEK5 as a cellular kinase directly regulating BMK1 activity; however, signaling molecules that directly regulate MEK5 activity have not yet been defined. Through utilization of a yeast two-hybrid screen, we have identified MEKK3 as a molecule that physically interacts with MEK5. This interaction appears to take place in mammalian cells as evidenced by the fact that cellular MEK5 and MEKK3 co-immunoprecipitate. In addition, we show that a dominant active form of MEKK3 stimulates BMK1 activity through MEK5. Moreover, we demonstrate that MEKK3 activity is required for growth factor mediated cellular activation of endogenous BMK1. Taken together, these results identify MEKK3 as a kinase that regulates the activity of MEK5 and BMK1 during growth factor-induced cellular stimulation.  相似文献   

14.
ATP, acting via P2Y, G protein-coupled receptors (GPCRs), is a mitogenic signal and also synergistically enhances fibroblast growth factor-2 (FGF-2)-induced proliferation in astrocytes. Here, we have examined the effects of ATP and FGF-2 cotreatment on the main components of the extracellular-signal regulated protein kinase (ERK) cascade, cRaf-1, MAPK/ERK kinase (MEK) and ERK, key regulators of cellular proliferation. Surprisingly, ATP inhibited activation of cRaf-1 by FGF-2 in primary cultures of rat cortical astrocytes. The inhibitory effect did not diminish MEK and ERK activation; indeed, cotreatment resulted in a greater initial activation of ERK. ATP inhibition of cRaf-1 activation was not mediated by an increase in cyclic AMP levels or by protein kinase C activation. ATP also inhibited the activation of cRaf-1 by other growth factors, epidermal growth factor and platelet-derived growth factor, as well as other MEK1 activators stimulated by FGF-2, MEK kinase 1 (MEKK1) and MEKK2. Serotonin, an agonist of another GPCR coupled to ERK, did not inhibit FGF-2-induced cRaf-1 activation, thereby indicating specificity in the ATP-induced inhibitory cross-talk. These findings suggest that ATP stimulates an inhibitory activity that lays upstream of MEK activators and inhibits growth factor-induced activation of cRaf-1 and MEKKS: Such a mechanism might serve to integrate the actions of receptor tyrosine kinases and P2Y-GPCRS:  相似文献   

15.
Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis.  相似文献   

16.
17.
18.
19.
ERK2 nuclear-cytoplasmic distribution is regulated in response to hormones and cellular state without the requirement for karyopherin-mediated nuclear import. One proposed mechanism for the movement of ERK2 into the nucleus is through a direct interaction between ERK2 and nucleoporins present in the nuclear pore complex. Previous reports have attributed regulation of ERK2 localization to proteins that activate or deactivate ERK2, such as the mitogen-activated protein (MAP) kinase kinase MEK1 and MAP kinase phosphatases. Recently, a small non-catalytic protein, PEA-15, has also been demonstrated to promote a cytoplasmic ERK2 localization. We found that the MAP kinase insert in ERK2 is required for its interaction with PEA-15. Consistent with its recognition of the MAP kinase insert, PEA-15 blocked activation of ERK2 by MEK1, which also requires the MAP kinase insert to interact productively with ERK2. To determine how PEA-15 influences the localization of ERK2, we used a permeabilized cell system to examine the effect of PEA-15 on the localization of ERK2 and mutants that have lost the ability to bind PEA-15. Wild type ERK2 was unable to enter the nucleus in the presence of an excess of PEA-15; however, ERK2 lacking the MAP kinase insert largely retained the ability to enter the nucleus. Binding assays demonstrated that PEA-15 interfered with the ability of ERK2 to bind to nucleoporins. These results suggest that PEA-15 sequesters ERK2 in the cytoplasm at least in part by interfering with its ability to interact with nucleoporins, presenting a potential paradigm for regulation of ERK2 localization.  相似文献   

20.
Taurine is present in high concentrations in neutrophils, and when the cells are stimulated taurine can react with hypochlorous acid (HOCl) to form taurine-chloramine (Tau-Cl). This compound retains oxidant activity and can affect the neutrophil itself or surrounding tissue cells. We have investigated the effects of Tau-Cl on MAPK signaling in human umbilical vein endothelial cells (HUVEC). Tau-Cl caused no loss in intracellular glutathione or inactivation of the thiol-sensitive enzyme glyceraldehyde-3-phosphate dehydrogenase, indicating that it had not entered the cells. However, stimulation of HUVEC with Tau-Cl (20-100 microM) induced the rapid activation of ERK within 10 min. This activation was abolished by inhibition of MEK by U0126, indicating that it was not because of direct oxidation of ERK. No activation of p38 was detected. These results suggest that Tau-Cl reacts with a cell membrane target that results in intracellular ERK activation. Tau-Cl over the same concentration range and time scale stimulated epidermal growth factor (EGF) receptor tyrosine phosphorylation in A431 cells and HUVEC. The EGF receptor inhibitor PD158780 significantly attenuated Tau-Cl-induced phosphorylation of both the EGF receptor and ERK. This implicates the EGF receptor in the upstream activation of ERK. The Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine had no effect on Tau-Cl-induced EGF receptor or ERK activation. We propose that Tau-Cl acts on an oxidant-sensitive target on the cell surface, this being either the EGF receptor itself or another target that can interact with the EGF receptor, with consequential activation of ERK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号