首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously established an experimental system for oxidative DNA damage-induced tumorigenesis in the small intestine of mice. To elucidate the roles of mismatch repair genes in the tumor suppression, we performed oxidative DNA damage-induced tumorigenesis experiments using Msh2-deficient mice. Oral administration of 0.2% Potassium Bromate, KBrO3, effectively induced epithelial tumors in the small intestines of Msh2-deficient mice. We observed a 22.5-fold increase in tumor formation in the small intestines of Msh2-deficient mice compared with the wild type mice. These results indicate that mismatch repair is involved in the suppression of oxidative stress-induced intestinal tumorigenesis in mice. A mutation analysis of the Ctnnb1 gene of the tumors revealed predominant occurrences of G:C to A:T transitions. The TUNEL analysis showed a decreased number of TUNEL-positive cells in the crypts of small intestines from the Msh2-deficient mice compared with the wild type mice after treatment of KBrO3. These results suggest that the mismatch repair system may simultaneously function in both avoiding mutagenesis and inducing cell death to suppress the tumorigenesis induced by oxidative stress in the small intestine of mice.  相似文献   

2.
Deficiency in DNA mismatch repair (MMR) confers instability of simple repeated sequences and increases susceptibility to cancer. Some of the MMR genes are also implicated in other repair and cellular processes related to DNA damage response. Supposedly, lack of their function can lead to a global genomic instability, besides microsatellite instability (MSI). To study the spontaneous and induced genomic instability in germ cells, related to the Msh2 status, DNA alterations in the progeny of individual crosses of Drosophila deficient in one or two copies of the Msh2 gene, were analysed by the arbitrarily primed polymerase chain reaction (AP-PCR). The results indicate that the progeny of homozygous parents for the normal Msh2 allele (+/+) presents a significantly lower frequency of genomic alterations than those from heterozygous (+/-) or mutant homozygous (-/-) parents. In addition, the DNA damage transmitted to the progeny, after the adult parental males were exposed to bleomycin, indicates that whereas the induction of mutations related to MSI depends on the lack of the Msh2 function, the induction of other mutational events may require at least one functional Msh2 allele. Thus, the results obtained with heterozygous individuals may have special relevance for cancer development since they show that a disrupted Msh2 allele is enough to generate genomic instability in germ cells, increasing the genomic damage in the progeny of heterozygous individuals. This effect is enhanced by mutagenic stress, such as occurs after bleomycin exposure.  相似文献   

3.
DNA mismatch repair (MMR) is integral to the maintenance of genomic stability and more recently has been demonstrated to affect apoptosis and cell cycle arrest in response to a variety of adducts induced by exogenous agents. Comparing Msh2-null and wildtype mouse embryonic fibroblasts (MEFs), both primary and transformed, we show that Msh2 deficiency results in increased survival post-UVB, and that UVB-induced apoptosis is significantly reduced in Msh2-deficient cells. Furthermore, p53 phosphorylation at serine 15 is delayed or diminished in Msh2-deficient cells, suggesting that Msh2 may act upstream of p53 in a post-UVB apoptosis or growth arrest response pathway. Taken together, these data suggest that MMR heterodimers containing Msh2 may function as a sensor of UVB-induced DNA damage and influence the initiation of UVB-induced apoptosis, thus implicating MMR in protecting against UV-induced tumorigenesis.  相似文献   

4.
5.
6.
He D  Chen Y  Li H  Furuya M  Ikehata H  Uehara Y  Komura J  Mak TW  Ono T 《Mutation research》2012,734(1-2):50-55
In an attempt to evaluate the roles of the mismatch repair gene Msh2 in genome maintenance and in development during the fetal stage, spontaneous mutations and several developmental indices were studied in Msh2-deficient lacZ-transgenic mouse fetuses. Mutation levels in fetuses were elevated at 9.5dpc (days post coitum) when compared to wild-type mice, and the level of mutations continued to increase until the fetuses reached the newborn stage. The mutation levels in 4 different tissues of newborns showed similar magnitudes to those in the whole body. The levels remained similar after birth until 6 months of age. The molecular nature of the mutations examined in 12.5dpc fetuses of Msh2(+/+) and Msh2(-/-) revealed unique spectra which reflect errors produced during the DNA replication process, and those corrected by a mismatch repair system. Most base substitutions and simple deletions were reduced by the presence of the Msh2 gene, whereas G:C to A:T changes at CpG sequences were not affected, suggesting that the latter change was not influenced by mismatch repair. On the other hand, analysis of developmental indices revealed that there was very little effect, including the presence of malformations, resulting from Msh2-deficiencies. These results indicate that elevated mutation levels have little effect on the development of the fetus, even if a mutator phenotype appears at the organogenesis stage.  相似文献   

7.
After genotoxic insult, the decision to repair or undergo cell death is pivotal for undamaged cell survival, and requires a highly controlled coordination of both pathways. Disruption of this regulation results in tumorigenesis and failure of cancer therapy. Mismatch repair (MMR) proteins have a unique role by contributing to both pathways, though direct evidence for their function in the DNA damage response is ambiguous. We report separation of function mutants in the ATPase domains of yeast MutS homologous (MSH) proteins that uncouple MMR-dependent DNA repair from damage response to cisplatin. While mutations in the ATPase domain have devastating effects on the mutation rate of the cell, ATPase processing is mostly dispensable for the cell death phenotype; only limited processing by the MSH6 subunit is required in DNA damage response. Different DNA binding patterns and nucleotide sensitivity of Msh2/Msh6-DNA adduct and protein-mismatch complexes, respectively, suggest that the presence of different DNA lesions influences the requirement for ATP. Limited proteolysis of purified protein gives first indications for differences in nucleotide-induced conformational changes in the presence of platinated DNA. Structural modeling of bacterial MutS proteins reinforces nucleotide-dependent differences in structures that contribute to the distinction between DNA damage response and repair. Our results demonstrate the uncoupling of MMR-dependent damage response from repair and present first indications for the involvement of distinct conformational changes in MSH proteins in this process. These data present evidence for a mechanism of MMR-dependent damage response that differs from MMR; these results have strong implications for the chemotherapeutic treatment of MMR-defective tumors.  相似文献   

8.
Mice that are genetically engineered are becoming increasingly more powerful tools for understanding the molecular pathology of many human hereditary diseases, especially those that confer an increased predisposition to cancer. We have generated mouse strains defective in the Xpc gene, which is required for nucleotide excision repair (NER) of DNA. Homozygous mutant mice are highly prone to skin cancer following exposure to UVB radiation, and to liver and lung cancer following exposure to the chemical carcinogen acetylaminofluorene (AAF). Skin cancer predisposition is significantly augmented when mice are additionally defective in Trp53 (p53) gene function. We also present the results of studies with mice that are heterozygous mutant in the Apex (Hap1, Ref-1) gene required for base excision repair and with mice that are defective in the mismatch repair gene Msh2. Double and triple mutant mice mutated in multiple DNA repair genes have revealed several interesting overlapping roles of DNA repair pathways in the prevention of mutation and cancer.  相似文献   

9.
In the Saccharomyces cerevisiae Msh2p-Msh6p complex, mutations that were predicted to disrupt ATP binding, ATP hydrolysis, or both activities in each subunit were created. Mutations in either subunit resulted in a mismatch repair defect, and overexpression of either mutant subunit in a wild-type strain resulted in a dominant negative phenotype. Msh2p-Msh6p complexes bearing one or both mutant subunits were analyzed for binding to DNA containing base pair mismatches. None of the mutant complexes displayed a significant defect in mismatch binding; however, unlike wild-type protein, all mutant combinations continued to display mismatch binding specificity in the presence of ATP and did not display ATP-dependent conformational changes as measured by limited trypsin protease digestion. Both wild-type complex and complexes defective in the Msh2p ATPase displayed ATPase activities that were modulated by mismatch and homoduplex DNA substrates. Complexes defective in the Msh6p ATPase, however, displayed weak ATPase activities that were unaffected by the presence of DNA substrate. The results from these studies suggest that the Msh2p and Msh6p subunits of the Msh2p-Msh6p complex play important and coordinated roles in postmismatch recognition steps that involve ATP hydrolysis. Furthermore, our data support a model whereby Msh6p uses its ATP binding or hydrolysis activity to coordinate mismatch binding with additional mismatch repair components.  相似文献   

10.
11.
The Msh2-Msh6 heterodimer plays a key role in the repair of mispaired bases in DNA. Critical to its role in mismatch repair is the ATPase activity that resides within each subunit. Here we show that both subunits can simultaneously bind ATP and identify the Msh6 subunit as containing the high-affinity ATP binding site and Msh2 as containing a high-affinity ADP binding site. Stable binding of ATP to Msh6 causes decreased affinity of Msh2 for ADP, and binding to mispaired DNA stabilized the binding of ATP to Msh6. Our results support a model in which mispair binding encourages a dual-occupancy state with ATP bound to Msh6 and Msh2; this state supports hydrolysis-independent sliding along DNA.  相似文献   

12.
Different DNA repair strategies to combat the threat from 8-oxoguanine   总被引:3,自引:0,他引:3  
Oxidative DNA damage is one of the most common threats to genome stability and DNA repair enzymes provide protection from the effects of oxidized DNA bases. In mammalian cells, base excision repair (BER) mediated by the OGG1 and MYH DNA glycosylases prevents the accumulation of 8-oxoguanine (8-oxoG) in DNA. When steady-state levels of DNA 8-oxoG were measured in myh(-/-) and myh(-/-)/ogg1(-/-) mice, an age-dependent accumulation of the oxidized purine was found in lung and small intestine of doubly defective myh(-/-)/ogg1(-/-) mice. Since there is an increased incidence of lung and small intestinal cancer in myh(-/-)/ogg1(-/-) mice, these findings are consistent with a causal role for unrepaired oxidized DNA bases in cancer development. We previously presented in vitro evidence that mismatch repair (MMR) participates in the repair of oxidative DNA damage and msh2(-/-) mouse embryo fibroblasts also have increased steady state levels of DNA 8-oxoG. To investigate whether DNA 8-oxoG also accumulates in vivo, basal levels were measured in several organs of 4-month-old msh2(-/-) mice and their wild-type counterparts. Msh2(-/-) mice had significantly increased levels of DNA 8-oxoG in spleen, heart, liver, lung, kidney and possibly small intestine but not in bone marrow, thymus or brain. The tissue-specificity of DNA 8-oxoG accumulation in msh2(-/-) and other DNA repair defective mice suggests that DNA protection of different organs is mediated by different combinations of repair pathways.  相似文献   

13.
Mice defective in the mismatch repair (MMR) gene Msh2 manifest an enhanced predisposition to skin cancer associated with exposure to UVB radiation. This predisposition is further heightened if the mice are additionally defective for the nucleotide excision repair gene Xpc. To test the hypothesis that the predisposition of Msh2 mutant mice to skin cancer reflects a mutator phenotype associated with increased proliferation of skin cells following exposure to UV radiation, Msh2 mutant mice were exposed to the tumor promoter TPA. Such mice showed a robust proliferative response in the skin, but did not manifest evidence of dysplasia or neoplasia. We conclude that the predisposition of Msh2 mice to UVB radiation-induced skin cancer reflects an interaction between the processes of mismatch repair and some other excision repair mode, the exact nature of which remains to be established.  相似文献   

14.
为探讨Balb/c小鼠增龄过程中线粒体DNA损伤及其修复基因表达与衰老之间的关系,采用逆转录 多聚酶链反应(RT PCR)方法,检测年轻与老年Balb/c小鼠脑、肝脏和脾脏中线粒体自身编码基因细胞色素氧化酶亚单位Ⅰ基因(coⅠ)和细胞色素氧化酶亚单位Ⅲ基因(coⅢ)及8 氧鸟嘌呤糖基化酶基因(ogg1)、DNA聚合酶γ(DNA polymeraseγ)基因、胸腺嘧啶乙二醇DNA糖基化酶基因(nth1)等碱基切除修复基因在mRNA水平的变化.用Western印迹方法检测小鼠脾脏中COⅢ和OGG1的蛋白质水平的变化.结果发现,老年小鼠脾脏中coⅠ和coⅢ的mRNA水平比年轻小鼠显著增加(P<0.05),CO Ⅲ的蛋白质水平亦比年轻小鼠显著升高(P<0.05);老年小鼠脾脏OGG1的mRNA和蛋白水平上均比年轻小鼠显著增加(P<0.05).老年小鼠肝脏和脾脏DNA聚合酶γ和NTH1的mRNA水平比年轻小鼠显著升高(P<0.05).提示线粒体DNA自身编码的基因及碱基切除修复基因的表达失衡可能是Balb/c小鼠衰老的原因之  相似文献   

15.
16.
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytosine deaminase (AID). The uracil, and potentially neighboring bases, are processed by error-prone base excision repair and mismatch repair. Deficiencies in Ung, Msh2, or Msh6 affect SHM and CSR. To determine whether Msh2/Msh6 complexes which recognize single-base mismatches and loops were the only mismatch-recognition complexes required for SHM and CSR, we analyzed these processes in Msh6(-/-)Ung(-/-) mice. SHM and CSR were affected in the same degree and fashion as in Msh2(-/-)Ung(-/-) mice; mutations were mostly C,G transitions and CSR was greatly reduced, making Msh2/Msh3 contributions unlikely. Inactivating Ung alone reduced mutations from A and T, suggesting that, depending on the DNA sequence, varying proportions of A,T mutations arise by error-prone long-patch base excision repair. Further, in Msh6(-/-)Ung(-/-) mice the 5' end and the 3' region of Ig genes was spared from mutations as in wild-type mice, confirming that AID does not act in these regions. Finally, because in the absence of both Ung and Msh6, transition mutations from C and G likely are "footprints" of AID, the data show that the activity of AID is restricted drastically in vivo compared with AID in cell-free assays.  相似文献   

17.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   

18.
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.  相似文献   

19.
20.
Stone JE  Petes TD 《Genetics》2006,173(3):1223-1239
DNA mismatches are generated when heteroduplexes formed during recombination involve DNA strands that are not completely complementary. We used tetrad analysis in Saccharomyces cerevisiae to examine the meiotic repair of a base-base mismatch and a four-base loop in a wild-type strain and in strains with mutations in genes implicated in DNA mismatch repair. Efficient repair of the base-base mismatch required Msh2p, Msh6p, Mlh1p, and Pms1p, but not Msh3p, Msh4p, Msh5p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the DNA proofreading exonuclease of DNA polymerase delta. Efficient repair of the four-base loop required Msh2p, Msh3p, Mlh1p, and Pms1p, but not Msh4p, Msh5p, Msh6p, Mlh2p, Mlh3p, Exo1p, Rad1p, Rad27p, or the proofreading exonuclease of DNA polymerase delta. We find evidence that a novel Mlh1p-independent complex competes with an Mlhp-dependent complex for the repair of a four-base loop; repair of the four-base loop was affected by loss of the Mlh3p, and the repair defect of the mlh1 and pms1 strains was significantly smaller than that observed in the msh2 strain. We also found that the frequency and position of local double-strand DNA breaks affect the ratio of mismatch repair events that lead to gene conversion vs. restoration of Mendelian segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号