首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and plays an important role in pathological angiogenic events. PlGF exerts its biological activities through binding to VEGFR1, a receptor tyrosine kinase that consists of seven immunoglobulin-like domains in its extracellular portion. Here we report the crystal structure of PlGF bound to the second immunoglobulin-like domain of VEGFR1 at 2.5 A resolution and compare the complex to the closely related structure of VEGF bound to the same receptor domain. The two growth factors, PlGF and VEGF, share a sequence identity of approximately 50%. Despite this moderate sequence conservation, they bind to the same binding interface of VEGFR1 in a very similar fashion, suggesting that both growth factors could induce very similar if not identical signaling events.  相似文献   

2.
Vascular endothelial growth factor (VEGF) stimulates angiogenesis by activating VEGF receptor-2 (VEGFR-2). The role of its homolog, placental growth factor (PlGF), remains unknown. Both VEGF and PlGF bind to VEGF receptor-1 (VEGFR-1), but it is unknown whether VEGFR-1, which exists as a soluble or a membrane-bound type, is an inert decoy or a signaling receptor for PlGF during angiogenesis. Here, we report that embryonic angiogenesis in mice was not affected by deficiency of PlGF (Pgf-/-). VEGF-B, another ligand of VEGFR-1, did not rescue development in Pgf-/- mice. However, loss of PlGF impaired angiogenesis, plasma extravasation and collateral growth during ischemia, inflammation, wound healing and cancer. Transplantation of wild-type bone marrow rescued the impaired angiogenesis and collateral growth in Pgf-/- mice, indicating that PlGF might have contributed to vessel growth in the adult by mobilizing bone-marrow-derived cells. The synergism between PlGF and VEGF was specific, as PlGF deficiency impaired the response to VEGF, but not to bFGF or histamine. VEGFR-1 was activated by PlGF, given that anti-VEGFR-1 antibodies and a Src-kinase inhibitor blocked the endothelial response to PlGF or VEGF/PlGF. By upregulating PlGF and the signaling subtype of VEGFR-1, endothelial cells amplify their responsiveness to VEGF during the 'angiogenic switch' in many pathological disorders.  相似文献   

3.

Background

Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium.

Methods

Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay.

Results

Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic.

Conclusions

VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.  相似文献   

4.
5.
6.
Vascular endothelial growth factor (VEGF) is a potent cytokine involved in the induction of neovascularization. Secreted as a cysteine-linked dimer, it has two binding sites at opposite poles through which it may bind VEGF receptors (VEGFRs), receptor tyrosine kinases found on the surface of endothelial and other cells. The binding of a VEGF molecule to two VEGFR molecules induces transphosphorylation of the intracellular domains of the receptors, leading to signal transduction. The dominant mechanism of receptor dimerization is not clear: the receptors may be present in an inactive pre-dimerized form, VEGF binding first to one of the receptors, the second receptor then ideally located for dimerization; or VEGF may bind receptor monomers on the cell surface, which then diffuse and bind to available unligated receptor monomers to complete the activation. Both processes take place and one or other may dominate on different cell types. We demonstrate the impact of dimerization mechanism on the binding of VEGF to the cell surface and on the formation of active signaling receptor complexes. We describe two methods to determine which process dominates, based on binding and phosphorylation assays. The presence of two VEGF receptor populations, VEGFR1 and VEGFR2, can result in receptor heterodimer formation. Our simulations predict that heterodimers will comprise 10-50% of the active, signaling VEGF receptor complexes, and that heterodimers will form at the expense of homodimers of VEGFR1 when VEGFR2 populations are larger. These results have significant implications for VEGF signal transduction and interpretation of experimental studies. These results may be applicable to other ligand-receptor pairs, in particular PDGF.  相似文献   

7.
Angiogenesis is a tightly controlled process in which signaling by the receptors for vascular endothelial growth factor (VEGF) plays a key role. In order to define signaling pathways downstream of VEGF receptors (VEGFR), the kinase domain of VEGFR2 (Flk-1) was used as a bait to screen a human fetal heart library in the yeast two-hybrid system. One of the signaling molecules identified in this effort was HCPTPA, a low molecular weight, cytoplasmic protein tyrosine phosphatase. Although HCPTPA possesses no identifiable phosphotyrosine binding domains (i.e. SH2 or phosphotyrosine binding domains), it bound specifically to active, autophosphorylated VEGFR2 but not to a mutated, kinase-inactive VEGFR2. Recombinant VEGFR2 and endogenous VEGFR2 were substrates for recombinant HCPTPA, and HCPTPA was co-expressed with VEGFR2 in endothelial cell lines, suggesting that HCPTPA may be a negative regulator of VEGFR2 signal transduction. To pursue this possibility, an adenovirus directing the expression of HCPTPA was constructed. When used to infect cultured endothelial cells, this adenovirus directed high level expression of HCPTPA that resulted in impairment of VEGF-mediated VEGFR2 autophosphorylation and mitogen-activated protein kinase activation. Adenovirus-mediated overexpression of HCPTPA also inhibited VEGF-induced cellular responses (endothelial cell migration and proliferation) and inhibited angiogenesis in the rat aortic ring assay. Taken together, these findings indicate that HCPTPA may be an important regulator of VEGF-mediated signaling and biological activity. Potential interactions with other signaling pathways and possible therapeutic implications are discussed.  相似文献   

8.
The kinase insert domain-containing receptor (KDR) tyrosine kinase mediates calcium mobilization in endothelial cells and plays a key role during physiological and pathological angiogenesis. To provide a detailed understanding of how KDR is activated, we analyzed the kinetics of ligand-receptor interaction using BIAcore. Both predimerized (KDR-Fc) and monomeric (KDR-cbu) receptors were examined with vascular endothelial cell growth factor (VEGF) homodimers and VEGF/placental growth factor (PlGF) heterodimers. VEGF binds to KDR-Fc with ka = 3.6 +/- 0.07e6, kd = 1.34 +/- 0.19e-4, and KD = 37.1 +/- 4.9 pM. These values are similar to those displayed by monomeric KDR where ka = 5.23 +/- 1.4e6, kd = 2.74 +/- 0.76e-4, and KD = 51.7 +/- 5.8 pM were apparent. In contrast, VEGF/PlGF bound to KDR-Fc with ka = 7.3 +/- 1.6e4, kd = 4.4 +/- 1. 2e-4, and KD = 6 +/- 1.2 nM. Thus, the heterodimer displays a 160-fold reduced KD for binding to predimerized KDR, which is mainly a consequence of a 50-fold reduction in ka. We were unable to detect association between VEGF/PlGF and monomeric KDR. However, nanomolar concentrations of VEGF/PlGF were able to elicit weak calcium mobilization in endothelial cells. This latter observation may indicate partial predimerization of KDR on the cell surface or facilitation of binding due to accessory receptors.  相似文献   

9.
The placental growth factor (PlGF), a member of VEGF family, plays a crucial role in pathological angiogenesis, especially ischemia, inflammation, and cancer. This activity is mediated by its selective binding to VEGF receptor 1 (VEGFR‐1), which occurs predominantly through receptor domains 2 and 3. The PlGF β‐hairpin region spanning residues Q87 to V100 is one of the key binding elements on the protein side. We have undertaken a study on the design, preparation, and functional characterization of the peptide reproducing this region and of a set of analogues where glycine 94, occurring at the corner of the hairpin in the native protein, is replaced by charged as well as hydrophobic residues. Also, some peptides with arginine 96 replaced by other residues have been studied. We find that the parent peptide weakly binds VEGFR‐1, but replacement of G94 with residues bearing H‐bond donating residues significantly improves the affinity. Replacement of R96 instead blocks the interaction between the peptide and the domain. The strongest affinity is observed with the G94H (peptide PlGF‐2) and G94W (peptide PlGF‐10) mutants, while the peptide PlGF‐8, bearing the R96G mutation, is totally inactive. The PlGF‐1 and PlGF‐2 peptides also bind the VEGFR‐2 receptors, though with a reduced affinity, and are able to interfere with the VEGF‐induced receptor signaling on endothelial cells. The peptides also bind VEGFR‐2 on the surface of cells, while PlGF‐8 is inactive. Data suggest that these peptides have potential applications as PlGF/VEGF mimic in various experimental settings.  相似文献   

10.
11.
Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin’s actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin’s actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin’s effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.  相似文献   

12.
Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.  相似文献   

13.
血管内皮细胞生长因子(vascular endothelial growth factor,VEGF或VEGF-A),又称为血管通透因子(vascular permeable factor,VPF)是一种具有多种功能的生物大分子,它是分泌性糖蛋白生长因子超家族中的一员.VEGF主要通过两个高亲和力的酪氨酸激酶受体来传递各种信号:VEGF受体1和2(VEGFR1,VEGFR2),从而引起细胞的多种生理反应.在胚胎时期,VEGF可以促进血管内皮细胞的增殖、迁移、管状形成和提高内皮细胞的存活率,对于血管新生和发育十分关键;而在成体时期,VEGF则主要参与正常血管结构的维持,并调节生理和病理性血管新生.近几年来的临床试验表明,使用多种阻断VEGF作用的抑制剂能有效促进肿瘤血管的退化和减小肿瘤的体积,但是同时在部分病人中也观察到了多方面的副作用.这些结果显示,VEGF也具有非血管新生方面的重要功能.因此,在研制基于拮抗VEGF作用的抗癌药物时,这些功能更不容忽视.研究表明,在成体的小肠、胰岛、甲状腺、肾脏和肝脏等器官组织中,VEGF都发挥着十分重要的作用,如果VEGF水平降低,这些器官组织的毛细血管网状结构将部分退化.VEGF还可以促进骨髓形成、组织修复与再生、促进卵巢囊泡成熟,并且参与血栓、炎症反应和缺氧缺血的病理过程.本文主要对VEGF在血管新生之外的功能及其分子机制进行了简要探讨.  相似文献   

14.
Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  相似文献   

15.
Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2.  相似文献   

16.
The products of the neuropilin-1 (Np-1) and neuropilin-2 (Np-2) genes are receptors for factors belonging to the class 3 semaphorin family and participate in the guidance of growing axons to their targets. In the presence of heparin-like molecules, both receptors also function as receptors for the heparin-binding 165-amino acid isoform of vascular endothelial growth factor (VEGF(165)). Both receptors are unable to bind to the 121-amino acid isoform of vascular endothelial growth factor (VEGF(121)), which lacks a heparin-binding domain. Interestingly, complexes corresponding in size to (125)I-VEGF(121).neuropilin complexes are formed when (125)I-VEGF(121) is bound and cross-linked to porcine aortic endothelial cells co-expressing VEGFR-1 and either Np-1 or Np-2. These complexes do not seem to represent complexes of (125)I-VEGF(121) with a truncated form of VEGFR-1, presumably formed as a result of the presence of Np-1 or Np-2 in the cells, because such truncated forms could not be detected with anti-VEGFR-1 antibodies. Antibodies directed against VEGFR-1 co-immunoprecipitated the (125)I-VEGF(121).Np-2 sized cross-linked complex along with (125)I-VEGF(121).VEGFR-1 complexes from cells expressing both VEGFR-1 and Np-2 but not from control cells, indicating that VEGFR-1 and Np-2 associate with each other. To perform the reciprocal experiment we have expressed in porcine aortic endothelial cells a Np-2 receptor containing an in-frame myc epitope at the C terminus. Surprisingly, the myc-tagged Np-2 receptor lost most of its VEGF(165) binding capacity but not its semaphorin-3F binding ability. Nevertheless, when Np-2myc was co-expressed in cells with VEGFR-1, it partially regained its VEGF(165) binding ability. Antibodies directed against the myc epitope co-immunoprecipitated (125)I-VEGF(165).Np-2myc and (125)I- VEGF(165).VEGFR-1 complexes from cells co-expressing VEGFR-1 and Np-2myc, indicating again that VEGFR-1 associates with Np-2. Our experiments therefore indicate that Np-2, and possibly also Np-1, associate with VEGFR-1 and that such complexes may be part of a cell membrane-associated signaling complex.  相似文献   

17.
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states.  相似文献   

18.
19.
Vascular endothelial growth factor (VEGF) regulates vasculogenesis and angiogenesis by using two tyrosine kinase receptors, VEGFR1 and VEGFR2. VEGFR1 null mutant mice die on embryonic day 8.5 (E8.5) to E9.0 due to an overgrowth of endothelial cells and vascular disorganization, suggesting that VEGFR1 plays a negative role in angiogenesis. We previously showed that the tyrosine kinase (TK) domain of VEGFR1 is dispensable for embryogenesis, since VEGFR1 TK-deficient mice survived and were basically healthy. However, the molecular basis for this is not yet clearly understood. To test the hypothesis that the specific role of VEGFR1 during early embryogenesis is to recruit its ligand to the cell membrane, we deleted the transmembrane (TM) domain in TK-deficient VEGFR1 mice. Surprisingly, about half of the VEGFR1(TM-TK)-deficient mice succumbed to embryonic lethality due to a poor development of blood vessels, whereas other mice were healthy. In VEGFR1(TM-TK)(-/-) mice with growth arrest, membrane-targeted VEGF was reduced, resulting in the suppression of VEGFR2 phosphorylation. Furthermore, the embryonic lethality in VEGFR1(TM-TK)(-/-) mice was significantly increased to 80 to 90% when the genotype of VEGFR2 was changed from homozygous (+/+) to heterozygous (+/-) in 129/C57BL6 mice. These results strongly suggest that the membrane-fixed ligand-binding region of VEGFR1 traps VEGF for the appropriate regulation of VEGF signaling in vascular endothelial cells during early embryogenesis.  相似文献   

20.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号