首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cough is a common and important symptom of asthma and allergic rhinitis. Previous experimental evidence has shown enhanced cough sensitivity during early phase of experimental allergic rhinitis in guinea pigs. We hypothesized that airway inflammation during the late phase response after repeated nasal antigen challenge may affect the afferent sensory nerve endings in the larynx and tracheobronchial tree and may also modulate cough response. In the present study we evaluated the cough sensitivity during a period of early and late allergic response in sensitized guinea pigs after repeated nasal antigen challenges. Forty-five guinea pigs were sensitized with ovalbumin (OVA). Four weeks later 0.015 ml of 0.5 % OVA was intranasally instilled to develop a model of allergic rhinitis that was evaluated from the occurrence of typical clinical symptoms. Animals were repeatedly intranasally challenged either by OVA (experimental group) or by saline (controls) in 7-day intervals for nine weeks. Cough was elicited by inhalation of citric acid aerosols. Cough was evaluated at 1 or 3 h after the 6th nasal challenge and 17 or 24 h after the 9th nasal challenge. The cough reflex was significantly increased at 1 and 3 h after repeated nasal challenge in contrast to cough responses evoked at 17 and 24 h after repeated nasal challenge. In conclusion, enhanced cough sensitivity only corresponds to an early allergic response after repeated nasal challenges.  相似文献   

2.
The aim of this study was to elucidate the role of thromboxane A(2) (TxA(2)) on asthma-related cough in guinea pigs. Animals were immunosensitized and repeatedly challenged with ovalbumin as an antigen. Coughs were induced by the inhalation of 10(-5) M capsaicin solution for 10 min. Thromboxane synthetase (TxS) inhibitor OKY-046 and thromboxane-receptor antagonist AA-2414 significantly inhibited cough responses in repeatedly challenged animals. Inhalation of TxA(2) mimic STA-2- potentiated cough responses in normal and immunosensitized animals but not in repeatedly challenged ones. Moreover, STA-2-potentiated coughs were inhibited by administration of neurokinin-receptor antagonist FK-224. In repeatedly challenged animals, concentration of TxB(2) in airway lavage fluid, expression of TxS mRNA in tracheal epithelia, and the immunostaining intensity against TxS in mucous cells of the epithelium significantly increased compared with normal and sensitized animals. These results suggest that TxA(2) derived from mucous cells potentiated cough responses to capsaicin in allergic airway inflammation.  相似文献   

3.
Adenosine induces dyspnea, cough, and airways obstruction in asthma, a phenomenon that also occurs in various sensitized animal models in which a neuronal involvement has been implicated. Although adenosine has been suggested to activate cholinergic nerves, the precise mechanism has not been established. In the present study, the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) induced a cholinergic reflex, causing tracheal smooth muscle contraction that was significantly inhibited by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 100 microg/kg) (P < 0.05) in anesthetized animals. Furthermore, the adenosine A(2) agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) induced a small reflex, whereas the A(3) selective agonist N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine (IB-MECA) was without effect. The tracheal reflex induced by CPA was also inhibited by recurrent nerve ligation or muscarinic receptor blockade (P < 0.001), indicating that a cholinergic neuronal mechanism of action accounted for this response. The cholinergic reflex in response to aerosolized CPA was significantly greater in passively sensitized compared with naive guinea pigs (P < 0.01). Chronic capsaicin treatment, which inhibited sensory nerve function, failed to inhibit CPA-induced reflex tracheal contractions in passively sensitized guinea pigs, although the local anesthetic lidocaine inhibited CPA-induced tracheal contractions. The effects of CPA on the reflex response was not dependent on the release of histamine from tissue mast cells or endogenous prostaglandins as shown by the lack of effect of the histamine H(1) receptor antagonist pyrilamine (1 mg/kg) or the cyclooxygenase inhibitor meclofenamic acid (3 mg/kg), respectively. In conclusion, activation of pulmonary adenosine A(1) receptors can stimulate cholinergic reflexes, and these reflexes are increased in allergic guinea pigs.  相似文献   

4.
Effects of airway inflammation on cough response in the guinea pig   总被引:5,自引:0,他引:5  
We have developed a guinea pig model for coughrelated to allergic airway inflammation. Unanesthetized animals wereexposed to capsaicin aerosols for 10 min, and cough frequency wascounted during this period. The cough evaluation was performed by the following three methods: visual observation, acoustic analysis, andmonitoring of pressure changes in the body chamber. These analysesclearly differentiated a cough from a sneeze. To elucidate therelationship between cough response and airway inflammation, animalswere immunosensitized and multiple challenged. Sensitized guinea pigspresented no specific changes microscopically, but multiple-challengedanimals showed an increased infiltration of inflammatory cells into theairway. Cough number in response to capsaicin increased significantlyfrom 4.7 ± 1.4 coughs/10 min in normal animals to 10.6 ± 2.0 coughs/10 min in sensitized animals and further to 22.8 ± 1.3 coughs/10 min in multiple-challenged animals. This augmentedcough frequency was significantly inhibited by the inhalation oftachykinin-receptor antagonists and by oral ingestion, but notinhalation, of codeine phosphate. The results suggest that airwayinflammation potentiates an elevation of cough sensitivity in this model.

  相似文献   

5.
The association between asthma and gastroesophageal reflux has been attributed to microaspiration of gastric contents and/or vagally mediated reflex bronchoconstriction. In previous experimental studies concerning the pulmonary effects of tracheal or esophageal acid infusion, only animals without airway inflammation have been studied. We assessed the effects of esophageal and tracheal administration of hydrochloric acid (HCl) on normal guinea pigs (GP) and GP with airway inflammation induced by repeated ovalbumin exposures. These GP were anesthetized (pentobarbital sodium) and received 1) 20 microl of either 0.2 N HCl or saline into the trachea, or 2) 1 ml of either 1 N HCl or saline into the esophagus. Intratracheal HCl resulted in a significant increase in both respiratory system elastance and resistance (P < 0.001). There were no significant changes in respiratory mechanics when HCl was infused into the esophagus. In conclusion, we observed that infusion of large volumes of HCl into the esophagus did not change pulmonary mechanics significantly, even in guinea pigs with chronic allergen-induced airway inflammation. In contrast, intratracheal administration of small amounts of acid had substantial effects in normal GP and GP with airway inflammation.  相似文献   

6.
Reactive oxygen species have been implicated in the pathogenesis of asthma and, in atopic asthmatics, endogenous superoxide dismutase (SOD) enzyme levels are known to decrease. This suggests that replacing a failed endogenous SOD enzyme system with a mimetic of the endogenous enzyme would be beneficial and protective. In this study we demonstrate that removal of superoxide by the SOD mimetic (SODm) M40403 reduces the respiratory and histopathological lung abnormalities due to ovalbumin (OA) aerosol in a model of allergic asthma-like reaction in sensitized guinea pigs. Both respiratory abnormalities and bronchoconstriction in response to OA challenge are nearly absent in na?ve animals, while they sharply became severe in sensitized animals. In addition, OA aerosol induced a reduction of MnSOD activity which was paralleled with bronchiolar lumen reduction, pulmonary air space hyperinflation, mast cell degranulation, eosinophil infiltration, bronchial epithelial cell apoptosis, increase in myeloperoxidase activity, malonyldialdehyde production and 8-hydroxy-2'-deoxyguanosine formation in the lung tissue, as well as elevation of PGD2 in the bronchoalveolar lavage fluid. Treatment with M40403 restored the levels of MnSOD activity and significantly reduced all the above parameters. In summary, our findings support the potential therapeutic use of SOD mimetics in asthma and anaphylactic reactions and account for a critical role for superoxide in acute allergic asthma-like reaction in actively sensitized guinea pig.  相似文献   

7.
The antiallergic efficacy of the selective leukotriene synthesis inhibitor, piriprost, was evaluated in two models of airway anaphylaxis in sensitized guinea pigs. Contractions of lung strips evoked by cumulative challenge with allergen were resistant to mepyramine and enhanced by indomethacin. On the other hand, piriprost shifted the dose-response curve markedly to the right, causing more than 50 % inhibition at the highest dose of allergen. The bronchoconstrictor response evoked by cumulative challenge with aerosols of allergen in anesthetized animals, also enhanced by indomethacin, had a distinct mepyramine-sensitive component. Aerosols of piriprost blocked almost completely the allergic bronchoconstriction remaining after indomethacin and mepyramine. These findings indicate that leukotrienes, but not cyclooxygenase products, are major mediators of the acute airway response to allergen in guinea pigs.  相似文献   

8.
Heme oxygenase (HO), the heme-degrading enzyme, has shown anti-inflammatory effects in several models of pulmonary diseases. HO is induced in airways during asthma; however, its functional role is unclear. Therefore, we evaluated the role of HO on airway inflammation [evaluated by bronchoalveolar lavage (BAL) cellularity and BAL levels of eotaxin, PGE(2), and proteins], mucus secretion (evaluated by analysis of MUC5AC gene expression and periodic acid-Schiff staining), oxidative stress (evaluated by quantification of 4-hydroxynonenal adducts and carbonylated protein levels in lung homogenates), and airway responsiveness to histamine in ovalbumin (OVA)-sensitized and multiple aerosol OVA or saline-challenged guinea pigs (6 challenges, once daily, OVA group and control group, respectively). Airway inflammation, mucus secretion, oxidative stress, and responsiveness were significantly increased in the OVA group compared with the control group. HO upregulation by repeated administrations of hemin (50 mg/kg i.p.) significantly decreased airway responsiveness in control animals and airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These effects were reversed by the concomitant administration of the HO inhibitor tin protoporphyrin-IX (50 micromol/kg i.p.). Repeated administrations of tin protoporphyrin-IX alone significantly increased airway responsiveness in control animals but did not modify airway inflammation, mucus secretion, oxidative stress, and responsiveness in OVA animals. These results suggest that upregulation of the HO pathway has a significant protective effect against airway inflammation, mucus hypersecretion, oxidative stress, and hyperresponsiveness in a model of allergic asthma in guinea pigs.  相似文献   

9.
Cough elicitation and major physiological factors influencing cough occurrence were investigated in congenitally bronchial-hypersensitive (BHS) and -hyposensitive (BHR) guinea pigs exposed to citric acid (0.3 M) aerosol for 10 min. The number of cough in BHS was significantly larger than in BHR, while the latency to cough in BHS was significantly shorter than in BHR. Pretreatment with atropine (0.2%), lidocaine (2%) or salbutamol (0.1%) aerosol and desensitization of C-fibers with capsaicin (100 mg/kg) decreased the cough numbers in both BHS and BHR. The salbutamol, atropine and capsaicin pretreatments prolonged the cough latency in BHS, but only salbutamol prolonged the latency in BHR. After salbutamol pretreatment all BHR guinea pigs exhibited cough, while 66.7% of BHS guinea pigs exhibited it. Vagal blocking by atropine suppressed coughing in both BHS and BHR. Only a small number (33.3%) of BHR guinea pigs and no BHR guinea pigs exhibited a cough response after capsaicin and lidocaine pretreatment whereas many BHS guinea pigs still produced cough after such pretreatment. The present study demonstrated that the cough responsiveness to citric acid aerosol was significantly higher in BHS than in BHR. It was revealed that airway smooth muscle contraction and functional and/or morphological development of airway nervous receptors, especially C-fiber endings, contributed to aggravation of coughing in BHS.  相似文献   

10.
Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.  相似文献   

11.
Animal models exhibiting high homology with humans at the genetic and pathophysiological levels will facilitate identification and validation of gene targets underlying asthma. In the present study, a nonhuman primate model of allergic asthma was developed by sensitizing cynomolgus monkeys to dust mite antigen. Sensitization elevated allergen-specific serum IgE and IgG levels, and peripheral blood mononuclear cells isolated from sensitized animals released IL-4, IL-5, and IL-10, but not IFN-gamma. Aerosolized allergen decreased dynamic compliance and induced airway inflammation and hyperresponsiveness to aerosolized histamine. Albuterol and dexamethasone inhibited the airway constriction and allergen-induced inflammation, respectively. Airway wall remodeling that included goblet cell hyperplasia, basement membrane thickening, and smooth muscle hypertrophy was particularly evident in neonatally sensitized animals. In contrast to animals sensitized as adults, neonatally sensitized animals exhibited increased sensitivity to adenosine and larger allergen-induced changes in airway resistance and dynamic compliance. These results demonstrate that sensitization of cynomolgus monkeys with dust mite induces asthmalike symptoms, some of which may be dependent on age at the time of sensitization.  相似文献   

12.
The effects of a novel leukotriene (LT) C4/D4 antagonist, BAY-x-7195 on experimental allergic reactions in airway and skin were compared to that of ONO-1078. BAY-x-7195 showed an antagonistic action to LTD4-induced bronchoconstriction in vitro and in vivo. In in vitro experiments, BAY-x-7195 inhibited LTD4-induced contraction of isolated guinea pig tracheal muscle (pA2=8.03). BAY-x-7195 at doses of 3 – 30 mg/kg clearly inhibited LTD4-induced increases in respiratory resistance (Rrs) in guinea pigs. In contrast, BAY-x-7195 inhibited significantly U-46619-induced increases in Rrs at a dose of 30 mg/kg in guinea pigs. BAY-x-7195 at doses of 3 — 30 mg/kg inhibited the aerosolized antigen-induced biphasic increase in Rrs in guinea pigs. Moreover BAY-x-7195 inhibited repeated aeroantigen-induced airway hyperreactivity in guinea pigs. In mice, aeroantigen-induced airway inflammation were clearly inhibited by BAY-x-7195. These results show the efficacy of BAY-x-7195 against the antigen-induced increase in airway resistance and antigen-induced airway hyperreactivity in guinea pigs and mice, probably due to anti-LTD4 antagonistic action and the inhibition of antigen-induced airway inflammation.  相似文献   

13.
Correlation between the level of reactive oxygen species (ROS) generated by airway inflammatory cells and superoxide dismutase (SOD) activity of pulmonary tissue during an asthma attach was investigated in a guinea pig model of allergic asthma. In addition, the influence of SOD inhibition by diethyldithiocarbamate (DDC, Cu-chelating agent) on the airway was investigated in terms of pulmonary function during an asthma attach. Relative to controls, the capacity of bronchoalveolar lavage fluid (BAL) cells to release ROS was significantly increased in guinea pigs sensitized with ovalbumin (OA) as the antigen, and significantly increased in guinea pigs with an asthma attack provoked by the inhalation of OA. SOD activity was increased significantly in the antigen-sensitized group. The asthma provocation group showed a tendency for increase in total SOD activity, compared with the sensitization group, whose increase was dependent on the increase in copper, zinc-SOD (Cu, Zn-SOD) activity. Pretreatment with DDC increased the severity and duration of the asthma attack. These results were indicated that Cu, Zn-SOD was closely involved in the asthma process, particularly in the scavenging of oxygen radicals secreted from BAL cells.  相似文献   

14.
Correlation between the level of reactive oxygen species (ROS) generated by airway inflammatory cells and superoxide dismutase (SOD) activity of pulmonary tissue during an asthma attach was investigated in a guinea pig model of allergic asthma. In addition, the influence of SOD inhibition by diethyldithiocarbamate (DDC, Cu-chelating agent) on the airway was investigated in terms of pulmonary function during an asthma attach. Relative to controls, the capacity of bronchoalveolar lavage fluid (BAL) cells to release ROS was significantly increased in guinea pigs sensitized with ovalbumin (OA) as the antigen, and significantly increased in guinea pigs with an asthma attack provoked by the inhalation of OA. SOD activity was increased significantly in the antigen-sensitized group. The asthma provocation group showed a tendency for increase in total SOD activity, compared with the sensitization group, whose increase was dependent on the increase in copper, zinc-SOD (Cu, Zn-SOD) activity. Pretreatment with DDC increased the severity and duration of the asthma attack. These results were indicated that Cu, Zn-SOD was closely involved in the asthma process, particularly in the scavenging of oxygen radicals secreted from BAL cells.  相似文献   

15.
Hyperoxia-induced lung damage was investigated via airway and respiratory tissue mechanics measurements with low-frequency forced oscillations (LFOT) and analysis of spontaneous breathing indexes by barometric whole body plethysmography (WBP). WBP was performed in the unrestrained awake mice kept in room air (n = 12) or in 100% oxygen for 24 (n = 9), 48 (n = 8), or 60 (n = 9) h, and the indexes, including enhanced pause (Penh) and peak inspiratory and expiratory flows, were determined. The mice were then anesthetized, paralyzed, and mechanically ventilated. Airway resistance, respiratory system resistance at breathing frequency, and tissue damping and elastance were identified from the LFOT impedance data by model fitting. The monotonous decrease in airway resistance during hyperoxia correlated best with the increasing peak expiratory flow. Respiratory system resistance and tissue damping and elastance were unchanged up to 48 h of exposure but were markedly elevated at 60 h, with associated decreases in peak inspiratory flow. Penh was increased at 24 h and sharply elevated at 60 h. These results indicate no adverse effect of hyperoxia on the airway mechanics in mice, whereas marked parenchymal damage develops by 60 h. The inconsistent relationships between LFOT parameters and WBP indexes suggest that the changes in the latter reflect alterations in the breathing pattern rather than in the mechanical properties. It is concluded that, in the presence of diffuse lung disease, Penh is inadequate for characterization of the mechanical status of the respiratory system.  相似文献   

16.
Tobacco smoke (TS) exposure induces airway hyperreactivity, particularly in sensitive individuals with asthma. However, the mechanism of this airway hyperreactivity is not well understood. To investigate the relative susceptibility of atopic and nonatopic individuals to TS-induced airway hyperreactivity, we exposed ovalbumin (OA)-sensitized and nonsensitized guinea pigs to TS exposure (5 mg/l air, 30-min exposure, 7 days/wk for 120-156 days). Two similar groups exposed to compressed air served as controls. Airway reactivity was assessed as an increase in enhanced pause (Penh) units using a plethysmograph that allowed free movement of the animals. After 90 days of exposure, airway reactivity increased in OA-TS guinea pigs challenged with capsaicin, bradykinin, and neurokinin A fragment 4--10 aerosols. In addition, substance P content increased in lung perfusate of OA-TS guinea pigs in response to acute TS challenge compared with that of the other groups. Airway hyperirritability was not enhanced by phosphoramidon but was attenuated by a cocktail of neurokinin antagonists, nor was airway hyperreactivity observed after either methacholine or histamine challenge in OA-TS guinea pigs. Chronic TS exposure enhanced neither airway reactivity to histamine or methacholine nor contractility of isolated tracheal rings. In conclusion, chronic TS exposure increased airway reactivity to capsaicin and bradykinin aerosol challenge, and OA-TS guinea pigs were most susceptible to airway dysfunction as the result of exposure to TS compared with the other groups. Increased airway reactivity to capsaicin suggests a mechanism involving neurogenic inflammation, such as increased activation of lung C fibers.  相似文献   

17.
BACKGROUND: Angiotensin Converting Enzyme Inhibitors (ACEIs) like enalapril are extremely effective in the treatment of hypertension and heart failure. One of the most important side-effects of these drugs which can lead to cessation of therapy is a persistant dry cough, induced because of increased bradykinin levels in the lung. Although antitussive alkaloids like codeine are effective in suppressing this cough, they too present a wide range of side-effects, most notably addiction. OBJECTIVE: In a previous work we were able to show that noscapine, a non-narcotic antitussive agent, was able to decrease enalapril induced cough in guinea pigs. In this work, papaverine, another non-narcotic alkaloid found in opium latex was tested in the guinea pig model for antitussive activity. METHOD: Cough was induced in enalapril pretreated guinea pigs by forcing the animals to inspire capsaicin aerosol in an air-tight chamber. Coughs were recorded in control animals and in those which had received different doses of papaverine. Characteristic changes in chamber air pressure, were detected by a pressure transducer. RESULTS:. At low doses (0.5 and 0.25 mg/kg) papaverine was able to decrease enalapril induced cough. CONCLUSION. This effect was not mediated by the action of the drug on mu receptors and was only observed in animals treated with enalapril.  相似文献   

18.
We evaluated the mechanism of the anti-asthmatic effect of inhaled indomethacin (Indo) by using an animal model (guinea pigs) of airway inflammation. After being exposed to either ozone or room air at identical flow rates (5 l/min) for 2 h, guinea pigs were anesthetized, tracheostomized, and lung resistance (RL) was subsequently measured. Guinea pigs inhaled either saline or Indo (1.5 mg/ml) for 1 min before undergoing an ultrasonically nebulized distilled water (UNDW) inhalation test. RL increased significantly after 10 min of UNDW inhalation in the room air and ozone groups but more so in the ozone group. This increase in RL was significantly suppressed by pretreatment with Indo. In the morphometric assessment of airway mucosa, a significant swelling of the epithelial cells after UNDW inhalation was observed in both the room air and ozone groups but especially so in the ozone group. This increase was also suppressed with Indo pretreatment. These results suggest that the increase in RL and the swelling of airway epithelial cells induced by inhaled UNDW in ozone-exposed guinea pigs was suppressed by pretreatment of inhaled Indo and that this suppression may be one of the reasons for the anti-asthmatic effect of inhaled Indo.  相似文献   

19.
BACKGROUND: Although prostaglandin D2 (PGD2), a mast cell-derived inflammatory mediator, may trigger allergic airway inflammation, its potency and the mechanism by which it induces airway microvascular leakage, a component of airway inflammation, is not clear. OBJECTIVE: We wanted to evaluate the relative potency of PGD2 to cause microvascular leakage as compared to airflow obstruction, because both responses were shown to occur simultaneously in allergic airway diseases such as asthma. The role of thromboxane A2 receptors (TP receptors) in inducing these airway responses was also examined. METHODS: Anesthetized and mechanically ventilated guinea pigs were given i.v. Evans blue dye (EB dye) and, 1 min later, PGD2 (30, 100, 300 or 1,000 nmol/kg). For comparison, the effect of 150 nmol/kg histamine or 2 nmol/kg leukotriene D4 (LTD4) was also examined. Lung resistance (R(L)) was measured for 6 min (or 25 min for selected animals) and the lungs were removed to calculate the amount of extravasated EB dye into the airways as a marker of leakage. In some of the animals, specific TP receptor antagonists, S-1452 (10 microg/kg) or ONO-3708 (10 mg/kg), or a thromboxane A2 synthase inhibitor, OKY-046 (30 mg/kg), was pretreated before giving PGD2. RESULTS: Injection of PGD2 produced an immediate and dose-dependent increase in RL (peaking within 1 min), which was significant at all doses studied. At 1,000 nmol/kg, PGD2 induced a later increase in R(L), starting at 3 min and reaching a second peak at 8 min. By contrast, only PGD2 at doses of 300 and 1,000 nmol/kg produced a significant increase in EB dye extravasation. The relative potency of 1,000 nmol/kg PGD2 to induce leakage as compared to airflow obstruction was comparable to histamine at most of airway levels, but less than LTD4. Both responses caused by PGD2 were completely abolished by S-1452 and ONO-3708, but not by OKY-046. CONCLUSION: PGD2 may induce airway microvascular leakage by directly stimulating TP receptors without generating TXA2 in guinea pigs. Microvascular leakage may play a role in the development of allergic airway inflammation caused by PGD2.  相似文献   

20.
Antigen challenge can provoke acute bronchoconstriction, recognized as immediate asthmatic response (IAR), but the evolving events in this reaction are not well defined. Recently, a novel peptide, designated adrenomedullin, was isolated from human pheochromocytoma, and has been shown to have potent systemic and pulmonary vasodilator activity.The purpose of this study was to elucidate the influence of adrenomedullin in the development of IAR. Passively sensitized guinea pigs were anesthetized and treated with diphenhydramine hydrochloride, and then artificially ventilated. Ovalbumin was inhaled after an intravenous administration of adrenomedullin. Other studies were performed in naive guinea pigs to investigate the airway responses to inhaled methacholine or histamine after an intravenous administration of adrenomedullin. Antigen challenge caused bronchoconstriction in sensitized guinea pigs. Adrenomedullin did not inhibit the antigen-induced bronchoconstriction in sensitized guinea pigs or the dose-dependent responses to inhaled methacholine or histamine in naive animals in spite of its vasodilating effect. We conclude that an intravenous administration of adrenomedullin does not influence antigen-induced bronchoconstriction or bronchial responsiveness to inhaled methacholine or histamine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号