首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous ineukaryotic cells,which transfer signals from the cell surface to the nucleus,controlling multiple cellularprograms.MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase(ERK) kinases (MEK)],which in turn are activated by MAPK kinase kinases (MAP3Ks).TAO2 is a MAP3Klevel kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs.Because p38 MAPKs arekey regulators of expression of inflammatory cytokines,they appear to be involved in human diseases suchas asthma and autoimmunity.As an upstream activator of p38s,TAO2 represents a potential drug target.Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine,a broad-range protein kinase inhibitor that inhibits TAO2 with an IC_(50) of 3 μM.The structure reveals that staurosporineoccupies the position where the adenosine of ATP binds in TAO2,and the binding of the inhibitor mimicsmany features of ATP binding.Both polar and nonpolar interactions contribute to the enzyme-inhibitorrecognition.Staurosporine induces conformational changes in TAO2 residues that surround the inhibitormolecule,but causes very limited global changes in the kinase.The structure provides atomic details forTAO2-staurosporine interactions,and explains the relatively low potency of staurosporine against TAO2.The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.  相似文献   

2.
Raman M  Earnest S  Zhang K  Zhao Y  Cobb MH 《The EMBO journal》2007,26(8):2005-2014
Thousand and one amino acid (TAO) kinases are Ste20p-related MAP kinase kinase kinases (MAP3Ks) that activate p38 MAPK. Here we show that the TAO kinases mediate the activation of p38 in response to various genotoxic stimuli. TAO kinases are activated acutely by ionizing radiation, ultraviolet radiation, and hydroxyurea. Full-length and truncated fragments of dominant negative TAOs inhibit the activation of p38 by DNA damage. Inhibition of TAO expression by siRNA also decreases p38 activation by these agents. Cells in which TAO kinases have been knocked down are less capable of engaging the DNA damage-induced G2/M checkpoint and display increased sensitivity to IR. The DNA damage kinase ataxia telangiectasia mutated (ATM) phosphorylates TAOs in vitro; radiation induces phosphorylation of TAO on a consensus site for phosphorylation by the ATM protein kinase in cells; and TAO and p38 activation is compromised in cells from a patient with ataxia telangiectasia that lack ATM. These findings indicate that TAO kinases are regulators of p38-mediated responses to DNA damage and are intermediates in the activation of p38 by ATM.  相似文献   

3.
4.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

5.
The TAO (for thousand-and-one amino acids) protein kinases activate p38 mitogen-activated protein (MAP) kinase cascades in vitro and in cells by phosphorylating the MAP/ERK kinases (MEKs) 3 and 6. We found that TAO2 activity was increased by carbachol and that carbachol and the heterotrimeric G protein Galphao could activate p38 in 293 cells. Using dominant interfering kinase mutants, we found that MEKs 3 and 6 and TAOs were required for p38 activation by carbachol or the constitutively active mutant GalphaoQ205L. To explore events downstream of TAOs, the effects of TAO2 on ternary complex factors (TCFs) were investigated. Transfection studies demonstrated that TAO2 stimulates phosphorylation of the TCF Elk1 on the major activating site, Ser383, and that TAO2 stimulates transactivation of Elk1 and the related TCF, Sap1. Reporter activity was reduced by the p38-selective inhibitor SB203580. Taken together, these studies suggest that TAO protein kinases relay signals from carbachol through heterotrimeric G proteins to the p38 MAP kinase, which then activates TCFs in the nucleus.  相似文献   

6.
BACKGROUND: Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS: Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS: Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.  相似文献   

7.
We previously reported the cloning of the thousand and one-amino acid protein kinase 1 (TAO1), a rat homolog of the Saccharomyces cerevisiae protein kinase sterile 20 protein. Here we report the complete sequence and properties of a related rat protein kinase TAO2. Like TAO1, recombinant TAO2 selectively activated mitogen-activated protein/extracellular signal-regulated kinase kinases (MEKs) 3, 4, and 6 of the stress-responsive mitogen-activated protein kinase pathways in vitro and copurified with MEK3 endogenous to Sf9 cells. To examine TAO2 interactions with MEKs, the MEK binding domain of TAO2 was localized to an approximately 135-residue sequence just C-terminal to the TAO2 catalytic domain. In vitro this MEK binding domain associated with MEKs 3 and 6 but not MEKs 1, 2, or 4. Using chimeric MEK proteins, we found that the MEK N terminus was sufficient for binding to TAO2. Catalytic activity of full-length TAO2 enhanced its binding to MEKs. However, neither the autophosphorylation of the MEK binding domain of TAO2 nor the activity of MEK itself was required for MEK binding. These results suggest that TAO proteins lie in stress-sensitive kinase cascades and define a mechanism by which these kinases may organize downstream targets.  相似文献   

8.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

9.
MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6.   总被引:19,自引:2,他引:17       下载免费PDF全文
Mixed lineage kinase-3 (MLK-3) is a 97 kDa serine/threonine kinase with multiple interaction domains, including a Cdc42 binding motif, but unknown function. Cdc42 and the related small GTP binding protein Rac1 can activate the SAPK/JNK and p38/RK stress-responsive kinase cascades, suggesting that MLK-3 may have a role in upstream regulation of these pathways. In support of this role, we demonstrate that MLK-3 can specifically activate the SAPK/JNK and p38/RK pathways, but has no effect on the activation of ERKs. Immunoprecipitated MLK-3 catalyzed the phosphorylation of SEK1 in vitro, and co-transfected MLK-3 induced phosphorylation of SEK1 and MKK3 at sites required for activation, suggesting direct regulation of these protein kinases. Furthermore, interactions between MLK-3 and SEK and MLK-3 and MKK6 were observed in co-precipitation experiments. Finally, kinase-dead mutants of MLK-3 blocked activation of the SAPK pathway by a newly identified mammalian analog of Ste20, germinal center kinase, but not by MEKK, suggesting that MLK-3 functions to activate the SAPK/JNK and p38/RK cascades in response to stimuli transduced by Ste20-like kinases.  相似文献   

10.
The Ste20 group kinases as regulators of MAP kinase cascades   总被引:34,自引:0,他引:34  
Ste20p (sterile 20 protein) is a putative yeast mitogen-activated protein kinase kinase kinase kinase (MAP4K) involved in the mating pathway. Its homologs in mammals, Drosophila, Caenorhabditis elegans and other organisms make up a large emerging group of protein kinases including 28 members in human. The Ste20 group kinases are further divided into the p21-activated kinase (PAK) and germinal center kinase (GCK) families. They are characterized by the presence of a conserved kinase domain and a noncatalytic region of great structural diversity that enables the kinases to interact with various signaling molecules and regulatory proteins of the cytoskeleton. This review describes the phylogenetic relationships of the Ste20 group kinases based on discussions with many researchers in this field. With the newly established phylogenetic relationships, crucial arguments can be advanced regarding the functions of these kinases as upstream activators of the MAPK pathways and possible activity as MAP4Ks. Their involvement in apoptosis, morphogenesis and cytoskeletal rearrangements is also discussed.  相似文献   

11.
Mitogen-activated protein (MAP) kinases are activated with great specificity by MAP/ERK kinases (MEKs). The basis for the specific activation is not understood. In this study chimeras composed of two MAP kinases, extracellular signal-regulated protein kinase 2 and p38, were assayed in vitro for phosphorylation and activation by different MEK isoforms to probe the requirements for productive interaction of MAP kinases with MEKs. Experimental results and modeling support the conclusion that the specificity of MEK/MAP kinase phosphorylation results from multiple contacts, including surfaces in both the N- and C-terminal domains.  相似文献   

12.
13.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   

14.
In examining the protein kinase components of mitogen-activated protein (MAP) kinase (MAPK) cascades that regulate the c-Jun N-terminal kinase (JNK) in Drosophila S2 cells, we previously found that distinct upstream kinases were involved in responses to sorbitol and lipopolysaccharide. Here we have extended that analysis to the possible MAPK kinase kinase kinases (MAP4Ks) in the JNK pathway. Fray, a putative Drosophila MAP4K, provided a major contribution to JNK activation by sorbitol. To explore the possible link to JNK in mammalian cells, we isolated and characterized OSR1 (oxidative stress-responsive 1), one of two human Fray homologs. OSR1 is a 58-kDa protein of 527 amino acids that is widely expressed in mammalian tissues and cell lines. Of potential regulators surveyed, endogenous OSR1 is activated only by osmotic stresses, notably sorbitol and to a lesser extent NaCl. However, OSR1 did not increase the activity of coexpressed JNK, nor did it activate three other MAPKs, p38, ERK2, and ERK5. A two-hybrid screen implicated another Ste20p family member, the p21-activated protein kinase PAK1, as an OSR1 target. OSR1 phosphorylated threonine 84 in the N-terminal regulatory domain of PAK1. Replacement of threonine 84 with glutamate reduced the activation of PAK1 by an active form of the small G protein Cdc42, suggesting that phosphorylation by OSR1 modulates the G protein sensitivity of PAK isoforms.  相似文献   

15.
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.  相似文献   

16.
OSR1 (oxidative stress-responsive-1) and SPAK (Ste20/Sps1-related proline/alanine-rich kinase) belong to the GCK-VI subfamily of Ste20 group kinases. OSR1 and SPAK are key regulators of NKCCs (Na+/K+/2Cl cotransporters) and activated by WNK family members (with-no-lysine kinase), mutations of which are known to cause Gordon syndrome, an autosomal dominant form of inherited hypertension. The crystal structure of OSR1 kinase domain has been solved at 2.25 Å. OSR1 forms a domain-swapped dimer in an inactive conformation, in which P+1 loop and αEF helix are swapped between dimer-related monomers. Structural alignment with nonswapped Ste20 TAO2 kinase indicates that the integrity of chemical interactions in the kinase domain is well preserved in the domain-swapped interfaces. The OSR1 kinase domain has now been added to a growing list of domain-swapped protein kinases recently reported, suggesting that the domain-swapping event provides an additional layer of complexity in regulating protein kinase activity.  相似文献   

17.
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.  相似文献   

18.
Nerve growth factor (NGF) increases expression of nitric oxide synthase (NOS) isozymes leading to enhanced production of nitric oxide (NO). NOS inhibitors attenuate NGF-mediated increases in cholinergic gene expression and neurite outgrowth. Mechanisms underlying this are unknown, but the mitogen-activated protein (MAP) kinase pathway plays an important role in NGF signaling. Like NGF, NO donors activate Ras leading to phosphorylation of MAP kinase. The present study investigated the role of NO in NGF-mediated activation of MAP kinase in PC12 cells. Cells were treated with 50 ng/mL NGF to establish the temporal pattern for rapid and sustained activation phases of MAP kinase kinase (MEK)-1/2 and p42/p44-MAP kinase. Subsequently, cells were pretreated with NOS inhibitors Nomega-nitro-L-arginine methylester and s-methylisothiourea and exposed to NGF for up to 24 h. NGF-induced activation of MEK-1/2 and p42/p44-MAP kinase was not dependent on NO, but sustained phosphorylation of MAP kinase was modulated by NO. This modulation did not occur at the level of Ras-Raf-MEK signaling or require activation of cGMP/PKG pathway. NOS inhibitors did not affect NGF-mediated phosphorylation of MEK. Expression of constitutively active-MEKK1 in cells led to phosphorylation of p42/p44-MAP kinase and robust neurite outgrowth; constitutively active-MKK1 also caused differentiation with neurite extension. NOS inhibitor treatment of cells expressing constitutively active kinases did not affect MAP kinase activation, but neurite outgrowth was attenuated. NOS inhibitors did not alter NGF-mediated nuclear translocation of phospho-MAP kinase, but phosphorylated kinases disappeared more rapidly from NOS inhibitor-treated cells suggesting greater phosphatase activity and termination of sustained activation of MAP kinase.  相似文献   

19.
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.  相似文献   

20.
Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase or MEK. The Arabidopsis thaliana genome encodes 10 MEKs but few of these have been shown directly to activate any of the 20 Arabidopsis MAP kinases. We show here that functional complementation of the cell lysis phenotype of a mutant yeast strain depends on the co-expression of the Arabidopsis MEK AtMKK6 and the MAP kinase AtMPK13. The kinase activity of AtMPK13 is stimulated in the presence of AtMKK6 in yeast cells. RT-PCR analysis showed the co-expression of these two genes in diverse plant tissues. These data show that AtMKK6 can functionally activate the MAP kinase AtMPK13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号