首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Castrate rams and ovariectomized ewes were maintained in the presence of entire rams and ewes and subjected to successive periods of alternating 6 h light:18 h darkness ('short' days) and 18 h light:6 h darkness ('long' days) preceded by a period of 12 h light:12 h darkness ('constant' light days). Plasma concentrations of LH and prolactin were measured in the castrate animals in order to determine how LH and prolactin secretion responded to the artificial light regime and corresponding periods of elevated or depressed testicular and ovarian activity in the entire rams and ewes. There was no variation in mean plasma LH concentrations or LH pulse frequency with either the changes in photoperiod or the phases of gonadal activity in the entire animals. However, there was a highly significant (P less than 0.001) relationship between prolactin secretion and the artificial photoperiod in both castrate groups with high and low levels coinciding with long and short days respectively. In addition, there was a marginally significant (P less than 0.1) relationship between prolactin secretion in the castrate ram and the stage of testicular activity in the entire rams with elevated levels associated with regressed activity. Prolactin secretion in the ovariectomized ewes was significantly (P less than 0.05) related to the phase of ovarian development with high levels associated with acyclic activity. It is concluded that LH secretion and pituitary responsiveness to exogenous GnRH were not modified by the artificial light regime. However, the changing light pattern was physiologically 'perceived' by the castrate animals as indicted by a concomitant variation in plasma prolactin concentrations.  相似文献   

2.
The response of rams and ewes of three breeds to artificial photoperiod   总被引:1,自引:0,他引:1  
Rams and ewes of the Romney Marsh (N = 6), Dorset Horn (N = 8) and Australian Merino (N = 8) breeds were subjected to 4 successive periods of alternating 6 h light/18 h dark ('short' days) and 18 h light/6 h dark ('long' days) preceded by 16 weeks of 12 h light/12 h dark. The initial period was of 32 weeks (16 weeks 'short' days; 16 weeks 'long' days) and the next 3 were of 24 weeks (12 weeks 'short' days; 12 weeks 'long' days). Rams of all breeds showed a cyclic pattern of growth and regression of testes associated with plasma testosterone concentration, influenced by the change in light regimen 15-19 weeks previously. Sexual behaviour was also cyclic but lagged by some 6-7 weeks. The changes were greatest in the Romneys and least in the Merinos in which a higher degree of sexual activity was evident even when the testes were regressed (P less than 0.001). This was the major breed difference. All ewes of the Romney and Dorset breeds showed marked seasonality related to the imposed light regimen, whereas only 1 of the 4 Merinos did so. The mean peak of ovarian activity in the former 2 breeds coincided with that of maximum sexual activity of rams housed with them; that is, some 6 weeks after maximum scrotal volume. The rams and ewes were subjected to serial blood sampling episodes for plasma LH and testosterone and tested for plasma LH release following GnRH administration. There was little variation between breeds in LH concentration. Testosterone concentration varied greatly in the ram, highest levels associated with the developed phase of the testes and with maximum LH pulse frequency. The LH response to GnRH changed with respect to the state of the gonads. Maximal responses were observed in the developing phase of testicular growth although this variation was greater in the Romney and Dorsets than in the Merinos (P less than 0.001). In the ewes, maximal responses were seen in the follicular phase (P less than 0.001), with no difference between the luteal and acyclic phases. There were no breed differences. Plasma pooled from the serial blood sampling episodes was assayed for prolactin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Long-term cycles in diameter of the testes, colouration of the sexual skin and plasma concentrations of testosterone, FSH and prolactin were monitored in groups of pinealectomized (PINX), superior cervical ganglionectomized (SCGX), and control Soay rams living near Edinburgh (56 degrees N). In Exp. 1, PINX, SCGX and control rams were kept outside for 4 years, and well defined seasonal cycles in each of the reproductive parameters were evident in all 3 groups (e.g. testosterone cycle length assessed by sine-wave analysis: 12.08 +/- 0.17, 12.39 +/- 0.14 and 12.15 +/- 0.10 months for PINX, SCGX and control rams respectively). Qualitative differences, however, were apparent between the groups in the timing and amplitude of the reproductive cycle. The seasonal peak in reproductive function occurred from July to September in the PINX and SCGX rams, some 2 months earlier in the year than in controls, while the amplitude of the cycle was less marked in the PINX and SCGX rams. There were no significant differences between the experimental groups in the seasonal cycle in the plasma concentrations of prolactin. In Exp. 2, SCGX and control rams were kept indoors under an artificial environment with a 32-week light cycle and constant nutrition for 4 years. Compared to the controls, in which the reproductive changes were synchronized to the driving light cycle, the SCGX rams showed poorly defined reproductive cycles of lower amplitude and longer period (e.g. testosterone cycle length: 57.8 +/- 6.1 and 32.1 +/- 0.2 weeks for SCGX and control rams, respectively). There was evidence of a cycle in some of the reproductive parameters in the SCGX rams with a period close to 32 weeks during the second half of the study (e.g. testosterone cycle 32.4 +/- 0.8 weeks), which was taken to indicate social induction from the neighbouring control rams. In two further short-term experiments, SCGX rams showed a decline in testicular activity in response to receiving a restricted diet (60% of controls) and an increase in testosterone secretion in response to exposure to oestrous ewes. The overall results illustrate that PINX and SCGX rams can generate long-term synchronized cycles in pituitary and testicular activity. The animals are apparently unable to respond to changes in daylength due to the loss of the functional pineal gland but they remain competent to respond to other environmental cues such as changes in nutrition, temperature and social factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Three experiments were conducted on anestrous ewes of Suffolk, Dorset, and Katahdin breeding to examine the potential value of GnRH to improve ovulation and pregnancy in response to introduction of rams. In Experiment 1, treatment with GnRH 2 d after treatment with progesterone (P4; 25 mg i.m.) at introduction of rams was compared to treatment with P4 alone at the time of introduction of rams. Treatment with GnRH did not increase percentages of ewes with a corpus luteum (CL) 14 d after introduction of rams, pregnant 32 d after treatment with PGF2α 14 d after introduction of rams, or percent of treated ewes lambing to all services. In Experiment 2, treatments with GnRH on day 2, 7, or both after introduction of rams were compared. Treatments did not differ in mean estrous response, percentages of ewes with a detectable CL or number of CL present on day 11, or mean pregnancy and lambing rates. Therefore, neither one nor two injections of GnRH at these times appeared to be effective to induce anestrous ewes to breed. In Experiment 3, treatments compared included GnRH 4 d before introduction of rams, GnRH 4 d before and 1 d after introduction of rams, ram introduction alone, and treatment with P4 (25 mg i.m.) at the time of introduction of rams. Percentages of ewes with concentrations of P4 greater than 1 ng/mL (indicating formation of CL had occurred) 7 d after ram introduction tended to be greater (P < 0.07) in ewes treated with GnRH or P4 than in control ewes treated with ram introduction alone. However, there was no difference in P4 concentrations between groups by day 11 or 12 after introduction of rams. Estrous response rates and percentages of ewes pregnant 95 d after PGF2α was administered (on day 12 after introduction of rams) tended to be greater (P = 0.08 and 0.06, respectively) in ewes treated with GnRH or P4 than in ewes exposed to rams only. There was no difference in response variables between ewes treated with GnRH 4 d before introduction of rams and ewes treated with GnRH 4 d before and 1 d after introduction of rams. In conclusion, treatment with GnRH 4 d before ram introduction showed promise as an alternative to treatment with P4 to improve the ovulatory response and reproductive performance of ewes introduced to rams during seasonal anestrus.  相似文献   

5.
Changes in LH, FSH, and testosterone concentrations, testicular firmness and resilience, and scrotal circumference were monitored in 16 Corriedale rams (8 experienced adult and 8 inexperienced young) for 20 days during which they were used to stimulate ewes. The experiment was conducted during November (mid-non-breeding season). Increases (P<0.05) were observed in LH and testosterone concentrations and in testicular firmness and resilience during the first 4 days when rams were in permanent contact with estrual ewes. During the following 13 days, when rams were in contact with non-estrual ewes (i.e. initially estrual ewes were no longer in estrus), LH and testosterone concentrations decreased. When initially anestrous ewes exhibited estrus 17 to 20 days later, concentrations of testosterone increased. Testicular firmness and resilience remained high throughout the period. We conclude that: (1) rams used to stimulate anestrous ewes show an increase in LH and testosterone concentrations beginning at 12 h after joining, and greater concentrations are maintained while estrual ewes and mating are allowed; and (2) estrous and mating activity are probably the most important stimuli for the increase in hormone concentrations.  相似文献   

6.
To examine the short-term effects of hemicastration on pituitary-gonadal responses, 12 ram lambs were anesthetized and hemicastrated at 4 mo of age and killed (n = 4) at 2 (HC2), 7 (HC7), or 14 (HC14) days following surgery. Four intact (INT) rams were killed 14 days following anesthesia. Testis and pituitary weights were similar between HC and INT rams. Serum follicle-stimulating hormone (FSH) in HC rams increased within 6 h, peaked at 12 h, and remained elevated above INT levels throughout the study. Overall mean serum testosterone levels in HC rams were lower than in INT rams for the first 48 h, but were similar by 3 days post-surgery. Pulsatile luteinizing hormone (LH) and testosterone secretion was suppressed for the first 9.5 h following anesthesia and/or surgery in both HC and INT animals. A single LH pulse and succeeding testosterone pulse occurred in 10/12 HC and 4/4 INT rams between 10 and 14 h post-surgery, both of which were lower in amplitude in HC than INT animals. However, on Day 7, pulsatile secretory patterns of LH and testosterone were similar, suggesting compensatory androgen secretion had occurred in HC rams. Pituitary LH content was unaffected by hemicastration. In contrast, pituitary FSH content was greater in HC7 and HC14 compared to HC2 and INT animals. Pituitary gonadotropin hormone-releasing hormone (GnRH) receptor concentrations were similar in INT, HC7, and HC14 rams, but were slightly reduced in HC2 rams. Neither testicular LH nor FSH receptor concentrations were altered by hemicastration at any time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Twenty-seven adult rams (9 Suffolk, 9 Texel and 9 Dorset Horn) were raised under natural photoperiod and were trained to serve into an artificial vagina. On 1 April they were abruptly exposed to 3 different photoperiods as follows: (i) 8 hours light and 16 hours darkness (8L : 16D); (ii) 16 hours light and 8 hours darkness (16L : 8D); (iii) natural photoperiod. All rams were kept at pasture daily between 09.30 h and 16.00 h except when required indoors for experimental work. Rams on artificial photoperiod had appropriate supplemental lighting in an environmental chamber. Semen collection was attempted from each ram on alternate weeks during the experiment which lasted for 6 months. Semen was evaluated for volume, density, motility and abnormalities. Testicular length and circumference were recorded at 2-week intervals and libido was recorded at 4-week intervals. Three blood samples were collected from each ram at 30-min intervals on a weekly basis and the plasma was stored at ?20°C until assayed for testosterone and prolactin.Photoperiod had no significant effect on semen volume, motility and percentage dead or abnormal cells. Breed of ram had a significant effect on semen motility (P < 0.05) with Dorset Horn rams producing semen with the highest motility. Volume and motility scores both increased as the breeding season approached (P < 0.05), while the percentage of abnormal cells decreased (P < 0.01). Breed or photoperiod did not significantly affect scrotal measurements although animals exposed to 8L : 16D had the highest measurements. Month affected testicular measurements which generally increased from April to September. Suffolk rams had higher testosterone concentrations, and this breed also completed the highest number of mounts within an allocated test time (P < 0.05). Dorset Horn rams reached a peak in testosterone concentrations in June/ July whereas Suffolks and Texels reached a similar peak in August. Prolactin concentrations decreased from a maximum at the start and rams on natural photoperiod tended to have highest levels. These results show that month can have a bigger influence on semen characteristics than imposed artificial photoperiods in rams which have been exposed to increasing natural daylength for some months.  相似文献   

8.
Aksoy M  Kaya A  Vatansev H  Tekeli T 《Theriogenology》2002,57(7):1907-1916
Testosterone secretion in response to GnRH stimulation and enzymatic activity of semen plasma was evaluated comparatively in rams with or without genital abnormality. Scrota, testes and epididymides of 128 rams between 1.5 and 6 years old from various breeds were examined clinically and ultrasonographically. Bilaterally cryptorchid rams (n = 2), and rams with focal testicular degeneration (n = 3) or unilateral sperm granuloma localized in the caput (n = 3) epididymis or the cauda epididymis (n = 3), diagnosed by either clinical or ultrasonographic examination, were selected for the further investigation of spermatologic parameters, testosterone secretion in response to GnRH stimulation, and enzymatic activity of semen plasma before histopathologic confirmation of lesions. Except for the cryptorchid rams, sperm parameters determined in ejaculates were similar to intact controls (n = 3). GnRH administration increased plasma testosterone levels significantly irrespective of the type of genital pathology (P < 0.01). The testosterone response calculated based on area under the curve following GnRH administration in rams having genital abnormality was not significantly different from the controls. Aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) activity in the semen plasma varied between rams, with the lowest mean values in the bilaterally cryptorchid group (P < 0.05). Spermatic granuloma localized either in the caput or cauda of the epididymis was associated with a significant reduction in the semen plasma AST activity compared to controls (P < 0.01). In conclusion, our results indicated that the ability of testicular tissue to secrete testosterone in response to GnRH stimulation in rams with bilateral cryptorchidism, focal testicular degeneration and unilateral sperm granuloma was similar to that of intact controls, and that reduced semen plasma AST activity may have a diagnostic value in the diagnosis of the epididymal obstruction in rams. Focal testicular degeneration did not influence AST, alkaline phosphatase (ALP) and LDH activity in semen plasma.  相似文献   

9.
Seasonal cycles in testicular activity in rams were monitored in groups of wild (mouflon), feral (Soay) and domesticated breeds of sheep (Shetland, Blackface, Herdwick, Norfolk, Wiltshire, Portland and Merino) living outdoors near Edinburgh (56 degrees N). The changes in the blood plasma concentrations of FSH, inhibin and testosterone, and the diameter of the testis were measured every half calendar month from 1 to 3 years of age. There were significant differences between breeds in the magnitude and timing of the seasonal reproductive cycle. In the mouflon rams, the seasonal changes were very pronounced with a 6-15-fold increase in the plasma concentrations of FSH, inhibin and testosterone from summer to autumn, and a late peak in testicular diameter in October. In the Soay rams and most of the domesticated breeds, the seasonal increase in the reproductive hormones occurred 1-2 months earlier with the peak in testicular size in September or October. In the two southern breeds (Portland and Merino), the early onset of testicular activity was more extreme with the seasonal maximum in August. In cross-bred rams, produced by mating Soay ewes (highly seasonal breed) with Portland or Merino rams (less seasonal breeds), there was a seasonal reproductive cycle that was intermediate compared to that of the parents. A comparison between all 11 breeds showed a significant correlation between the timing of the seasonal cycle in plasma FSH concentration and testicular diameter (time of peak FSH vs testis, r = 0.95). The overall results in the rams are consistent with a primary role of FSH in dictating the seasonal cycle in testicular size and the secretion of inhibin. The earlier seasonal onset in the testicular cycle in the southern breeds of domesticated sheep, and the differences from the wild type, are taken to represent the effects of genetic selection for a longer mating season.  相似文献   

10.
The continuous presence of active male small ruminants prevents seasonal anestrus in females, but evidence of the same mechanism operating from the females to the males is scarce. This study assessed the effects of the continuous presence of ewes in estrus in spring on ram sexual activity, testicular size and echogenicity, and LH and testosterone concentrations. On 1 March, 20 rams were assigned to two groups (n = 10 each): isolated (ISO) from other sheep, or stimulated (STI) by 12 ewes, which were separated from the rams by an openwork metal barrier, allowing contact between sexes. Each week, four ewes were induced into estrus by intravaginal sponges. Live weight, scrotal circumference, testicular width (TW) and length (TL) were recorded at the beginning and at the end of the experiment, and testicular volume (TV) was calculated; at the same time, testicular ultrasonography and color Doppler scanning were performed. Blood samples (March to May) were collected once per week for testosterone determinations, and at the end of the experiment, blood samples were collected for 6 h at 20-min intervals for LH analysis. Rams were exposed to four estrous ewes in a serving-capacity test. Scrotal circumference, TW and TL were higher in the STI than in the ISO rams (P < 0.05) in May, and TV was higher (P < 0.05) in the STI (391 ± 17 cm3) than in the ISO rams (354 ± 24 cm3). In ISO rams, the number of white pixels was higher (P < 0.01) in May (348 ± 74) than in March (94 ± 21) and differed significantly (P < 0.01) from that of the STI rams in May (160 ± 33). In ISO rams, the number of grey pixels was higher (P < 0.05) in May (107 ± 3) than it was in March (99 ± 1). Stimulated and ISO rams did not differ significantly in mean LH plasma concentrations (0.8 ± 0.5 v. 0.9 ± 0.4 ng/ml), LH pulses (2.1 ± 0.5 v. 2.2 ± 0.2) and amplitude (2.0 ± 0.4 v. 3.2 ± 0.7 ng/ml, respectively). Stimulated rams had significantly higher testosterone concentrations than ISO rams from April to the end of the experiment. Stimulated rams performed more (P < 0.05) mountings with intromission (3.0 ± 0.4) than did ISO rams (1.5 ± 0.5). In conclusion, after 3 months in the continuous presence of ewes in estrus in spring, rams had higher TV and some testicular echogenic parameters were modified than isolated rams. Although exposed rams also had higher levels of testosterone after 2 months in the presence of estrous ewes, their LH pulsatility at the end of the study was not modified.  相似文献   

11.
In Exp. 1, 4 groups of 50 recently weaned ewes were exposed to various degrees of contact with rams for 65 days, followed by exposure to novel rams for 4 days. Ovarian activity in the ewes was determined by laparoscopy on Days 29, 65 and 69 of treatment. There were no treatment differences in the percentage of ewes ovulating on Day 4 whereas by Day 29 more ewes in clear fenceline and full ram contact were ovulating compared to controls (P less than 0.05, P less than 0.001). After 65 days ovarian activity was significant only in those ewes in full contact with rams (P less than 0.001). Between 89 and 95% of ewes remaining anovulatory after 65 days ovulated after 4 days of full contact with novel rams. In Exp. 2, 4 groups of about 30 anovulatory ewes were exposed to various degrees of contact with rams for 5 days. Ovarian activity was assessed before and after treatment by laparoscopy. After 5 days, more ewes were ovulating in response to full ram contact than in any other treatment (P less than 0.05) and more ewes in fenceline contact with rams or with rams plus ewes were ovulating than in the isolated control treatment (P less than 0.01). In Exp. 3, 6 groups of about 40 anovulatory ewes were exposed to face masks with and without rams' wool and/or various degrees of contact with rams for 5 days. More ewes were ovulating after 5 days in the group in full physical contact with rams than in any other group (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The seasonal reproductive cycle in rams was monitored in Mouflon (wild-type), Soay (feral type) and a variety of domesticated breeds of sheep (Shetland, Blackface, Herdwick, Norfolk, Wiltshire, Portland and Merino) by measuring the changes in the diameter of the testes (first three years of life in all breeds) and the blood plasma concentrations of FSH and testosterone (first four to six years of life in Mouflon and Soay rams). In the Mouflon rams there was a pronounced seasonal cycle in all the reproductive parameters from one to six years of age. The plasma concentrations of FSH increased from June to September associated with redevelopment of the testes; maximum testicular size and plasma concentrations of testosterone occurred in October at the onset of the rut. In the Soay and domesticated breeds the seasonal maximum in testicular size occurred in late September or October except in two of the southern breeds (Portland and Merino) which showed an earlier peak to the sexual cycle in August. The change in size of the testes from the minimum to the maximum was less in the domesticated breeds (135–157%) compared to the Soay (171%) and Mouflon (160%). Crossbred rams produced by mating Soay ewes (highly seasonal breed) with Portland or Merino rams (less seasonal breed) had a seasonal testicular cycle intermediate in timing compared to the pattern characteristics of the parent breeds; this is consistent with the involvement of multiple genes in the mechanism controlling the sexual cycle in the ram. The earlier seasonal onset of full testicular activity in the southern breeds is assumed to be the result of selection for a prolongation of the breeding season for early lambing.  相似文献   

13.
Under moderate latitudes all breeds of rams undergo seasonal variations in testicular weight with a maximum during summer under decreasing daylength ([1]-[4]). Similarly, in rams submitted to a 6-month artificial light regime [5] or to an alternation of long (16L:8D) and short (8L:16D) days [6] an increase in testicular weight occurred following a decrease in daylength and vice versa. However this effect is transitory, a phenomenon which can be referred as photorefractoriness. In the present study the influence of the period of the light cycle on variation in testicular weight in the ram was investigated. 4 groups of 6 adults Ile-de-France rams were submitted to artificial light cycles where the daylength varied between 8-16 hrs. and the period (T) was 6, 4, 3, or 2 months respectively (Groups T6, T4, T3, and T2). Testicular volume was measured fortnightly using an orchidometer, Variations in testicular volume were submitted to harmonic regression analysis following the model y(t)=mu + a sin(2(pi t/tau) + phi). Cyclic changes in testicular volume were seen with each light cycle, at least in groups T6, T4, and T3 (Fig.). Analysis (Table) showed that: (1) the coefficient of determination R2 was high in the groups (2) mean testicular volume has increased from 258 to 294 cm3 when the period of the light cycle decreased from 6 to 2 months; (3) conversely, the amplitude decreased from 66.5 to 26.5 cm3 as the period decreased; (4) maximal testicular volumes (mean plus amplitude) were similar in all groups (range: T4, 312,5-T6,324 cm3) while minima (mean less amplitude) differed significantly (P<0.000,1) between groups (range: T6 and T4 about 190, T2 267.5 cm3) and (50 th computed periods of testicular volumes cycles were almost identical to the imposed light cycles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Two ewes were administered testosterone propionate and subsequent plasma testosterone concentrations determined and male sex behavior recorded. Initially ewes were administered 50 mg of testosterone propionate every other day for 20 days. Within 6 days following the first injection, concentrations of testosterone in plasma increased to 8.0 to 10.0 ng/ml. A 50 mg injection of testosterone propionate administered every 10 days thereafter maintained concentrations of plasma testosterone at 1.0 to 3.0 ng/ml. Sex behavior tests conducted with non-estrus and estrus ewes showed that both testosterone treated ewes developed male sex behavior similar to a ram. Ewes in estrus were mounted by testosterone treated ewes an average of 6.7 ± 1.2 times during a 10 minute test whereas none of the non-estrus ewes were ever mounted. Silastic implants containing testosterone propionate placed in the ewes 83 days following the first injection maintained concentrations of plasma testosterone at 6.0 to 8.0 ng/ml for a 20 day period. Therefore, administration of testosterone propionate to ewes effectively stimulates male sex behavior and would obviate the necessity for vasectomized rams for estrus detection.  相似文献   

15.
A study was carried out to investigate a novel approach to oestrus synchronization in the ewe by treatment with a gonadotrophin releasing hormone (GnRH) agonist. Groups of ewes were initially treated on Day 2, 10 or 14 of the oestrous cycle with 10 mug GnRH analogue (D-Ser(Bu(t)) 6 des Gly GnRH ethylamide) per ewe per day for 14 days. Behavioural oestrus was inhibited during GnRH agonist treatment and recurred from 8 to 38 days after the treatment in an unsynchronized manner. Luteal activity during treatment was not impaired but reduced progesterone concentrations occurred in cycles after the treatment. The rhythm of ovarian function, generally characterized by prolonged follicular development, was impaired. During the treatment and subsequent recovery period, integrity of pituitary function was examined by measuring luteinizing hormone (LH) after GnRH agonist was injected, and after stimulation test doses of 150 ng natural GnRH were administered. During treatment there was, with time, a decline in pituitary response to the agonist which suggested that pituitary release of LH was exhausted. After the 14-day treatment the stimulation test with GnRH revealed a gradual return to normal responsiveness although this was not complete three weeks after the treatment when compared to control ewes. This lowered pituitary activity could cause the impaired ovarian function.  相似文献   

16.
Changes in the dynamics of luteinizing hormone (LH) release in the adult ram following immunoneutralization of endogenous estradiol were investigated. Castrate rams were actively immunized against estradiol-6-bovine serum albumin for 7 months and then their patterns of episodic LH release and LH response to multiple injections of gonadotropin-releasing hormone (GnRH, two 5-micrograms doses given iv 2 h apart) were assessed (April). In comparison with control rams immunized against rabbit gamma globulin, estradiol-immunized rams (antibody titre approximately 1:5000) exhibited more frequent LH releases (11.7 +/- 0.3 vs. 9.3 +/- 0.8 pulses/8 h, P less than 0.05) and a greater LH response to the first GnRH injection (peak delta value 190 +/- 8 vs. 130 +/- 25 ng/mL, P less than 0.01). Estradiol antiserum collected from the castrate rams was used in the passive immunization of intact rams (antibody titre approximately 1:200) for 1 month (beginning mid-July). Although episodic LH release was always similar for control and immunized rams, testosterone levels in the latter group increased approximately 150%. In contrast with the castrate ram response, GnRH treatment (two 5-micrograms doses given iv 80 min apart) produced a "self-priming" effect on LH release in the intact rams, an effect that was dampened with estradiol immunoneutralization. Consequently, peak 2:peak 1 ratios for delta value and 80-min mean incremental increase were much smaller (P less than 0.01) for the immunized rams (approximately 2:1 vs. 4:1 for the control rams).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Adult rams were exposed to photoperiod treatments over 2 years to study the influence of light regimes on pituitary-testicular activity and semen quality. Initially, all rams (12 per group) were exposed to 3 months of long days (16L:8D). Group 1 was then exposed to a regime of continuous short days (8L:16D) and Groups 2, 3, and 4 were exposed to 4 months of short days alternated with 1, 2, or 4 months, respectively, of long days. Every 2 weeks, serum hormone levels and scrotal circumference were determined and semen quality was evaluated. Regular cycles in pituitary and testicular activities corresponding to the period of the lighting regime resulted in Groups 2, 3, and 4, but not in Group 1. In general, the change from long days to short days induced increases in follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels, scrotal size and sperm numbers and a decrease in prolactin. The reverse occurred after subsequent exposure to long days. After 4 months of long days, testicular regression was complete, but when long-day exposure was reduced, less regression occurred. With continuous exposure to short days, FSH and testosterone remained above basal levels, prolactin levels were depressed, scrotal size remained near the maximum, and elevated numbers of motile sperm were sustained.  相似文献   

18.
Groups of Romney ewes were joined with either Dorset or Romney rams on December 24 1975 and further groups joined on January 30 1976. A control group was subjected to laparotomy and joined with Romney rams after first ovulation was observed. Matings were recorded daily in all groups. At weekly intervals rams were separated from ewes and bled every 10 minutes for one hour. The plasma was radioimmunoassayed for testosterone.Ewes run with rams showed their first estrus of the breeding season earlier than controls and their onset was more synchronised. The time of ram joining did not affect the time of first estrus but ewes joined with Dorsets showed their first estrus earlier than those with Romneys. Romney rams had significantly higher mean testosterone levels than Dorsets on 5 of the 11 weekly bleedings throughout summer. The testosterone level decreased significantly over the seven consecutive bleedings of the hourly sampling period in five weeks and a significant interaction between breed of ram and testosterone level of consecutive bleedings was observed in three weeks.The results show that testosterone levels in Dorset and Romney rams during summer do not reflect the effectiveness of the breeds in inducing the early onset of estrus in Romney ewes.  相似文献   

19.
Exposure of anoestrous ewes to rams induces an increase in LH secretion, eventually leading to ovulation. This technique therefore is an effective, low-cost and hormone-free way of mating sheep outside the breeding season. However, the use of this technique is limited by the variability of the ewes’ responses. In this study, our objective was to understand more completely the origins of this variability and to determine the relative roles of breed, the point in time during anoestrus and the depth of anoestrus on the response to the ‘ram effect’. In the first experiment, the pattern of anoestrus on the basis of the concentration of progesterone determined weekly, was determined in four breeds including two less seasonal (Mérinos d'Arles and Romane), one highly seasonal (Mouton Vendéen) and one intermediate (Île-de-France) breeds. Anoestrus was longer and deeper in Mouton Vendéen and Île-de-France than in Romane or Mérinos d'Arles. In the second experiment, we used the same four breeds and tested their hypophyseal response to a challenge with a single dose of 75 ng gonadotrophin-releasing hormone (GnRH) in early, mid and late anoestrus, and then we examined their endocrine and ovarian responses to the ‘ram effect’. Most (97%) ewes responded to GnRH and most (93%) showed a short-term increase in LH pulsatility following the ‘ram effect’. The responses in both cases were higher in females that went on to ovulate, suggesting that the magnitude of the hypophyseal response to a GnRH challenge could be a predictor of the response to the ‘ram effect’. As previously observed, the best ovarian response was in Mérinos d'Arles at the end of anoestrus. However, there was no relationship between the proportion of females in the flock showing spontaneous ovulation and the response to the ‘ram effect’ of anoestrous ewes from the same flock.  相似文献   

20.
There is controversy over the potential endocrine modulating influence of pesticides, particularly during sensitive phases of development. In this study, ram lambs were exposed to lindane and pentachlorophenol from conception to necropsy at 28 weeks of age. The rams (and their mothers) were given untreated feed (n = 7) or feed treated with 1 mg kg-1 body weight per day of lindane (n = 12) or pentachlorophenol (n = 5). Semen was collected from 19 weeks onwards and reproductive behaviour was tested at 26 weeks. Serum was collected every 2 weeks and at 27 weeks every 15 min for 6 h during both day and night, and for 1 h before and 5 h after stimulation with GnRH, adrenocorticotrophic hormone and thyroid-stimulating hormone. The pesticides did not affect body weight and ejaculate characteristics, or cause overt toxicity. In pentachlorophenol-treated rams, scrotal circumference was increased. However, seminiferous tubule atrophy was more severe and epididymal sperm density was reduced in comparison with untreated rams at necropsy (P < 0.05). Thyroxine concentrations were lower in pentachlorophenol-treated rams than in untreated rams (P < 0.05). However, after thyroid-stimulating hormone treatment, the thyroxine response was unaltered. Reproductive behaviour was reduced in lindane-treated rams compared with control rams (P < 0.05). Serum LH and oestradiol concentrations during reproductive development, LH pulse frequency at 27 weeks and testosterone secretion after GnRH treatment were lower in lindane-treated rams than in untreated rams (P < 0.05). In summary, the effects of pentachlorophenol on the testis may be linked to a decrease in thyroxine concentrations, and reduced reproductive behaviour in lindane-treated rams may be related to decreased LH, oestradiol and testosterone concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号