首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astral microtubules (MTs) emanating from the mitotic apparatus (MA) during anaphase are required for stimulation of cytokinesis in eggs. We have used green fluorescent protein-labeled EB1 to observe MT dynamics during mitosis and cytokinesis in normal sea urchin eggs. Analysis of astral MT growth rates during anaphase shows that MTs contact the polar cortex earlier than the equatorial cortex after anaphase onset but that a normal cleavage furrow is not induced until contact with MTs has been achieved throughout the cortex. To assess the role of MT dynamics in initiation of cytokinesis, we used a collection of small molecule drugs to affect dynamics. Hexylene glycol resulted in rapid astral elongation due to decreased MT catastrophe and precocious furrowing. Taxol suppressed MT dynamics but did not inhibit furrow induction when the MA was manipulated toward the cortex. Urethane resulted in short, highly dynamic astral MTs with increased catastrophe that also stimulated furrowing upon being brought into proximity to the cortex. Our findings indicate that astral MT contact with the cortex is necessary for furrow initiation but that the dynamic state of astral MTs does not affect their competency to stimulate furrowing.  相似文献   

2.
The central spindle forms between segregating chromosomes during anaphase and is required for cytokinesis. Although anaphase-specific bundling and stabilization of interpolar microtubules (MTs) contribute to formation of the central spindle, it remains largely unknown how these MTs are prepared. Using live imaging of MT plus ends and an MT depolymerization and regrowth assay, we show that de novo MT generation in the interchromosomal region during anaphase is important for central spindle formation in human cells. Generation of interchromosomal MTs and subsequent formation of the central spindle occur independently of preanaphase MTs or centrosomal MT nucleation but require augmin, a protein complex implicated in nucleation of noncentrosomal MTs during preanaphase. MTs generated in a hepatoma up-regulated protein (HURP)-dependent manner during anaphase also contribute to central spindle formation redundantly with preanaphase MTs. Based on these results, a new model for central spindle assembly is proposed.  相似文献   

3.
In animal cells, microtubules (MTs) of the mitotic apparatus (MA) communicate with the cell cortex to stimulate cytokinesis; however, the molecular nature of this stimulus remains elusive . A signal for cytokinesis likely involves the MT plus end binding family of proteins, which includes EB1, p150glued, APC, LIS1, and CLIP-170. These proteins modulate MT dynamics and facilitate interactions between growing MTs and their intracellular targets, including kinetochores, organelles, and the cell cortex . The dynein-dynactin complex mediates many of these microtubule capture events . We report that EB1 and p150glued interactions are required for stimulation of cytokinesis in dividing sea urchin eggs. Injected antibodies against EB1 or p150glued suppressed furrow ingression but did not prevent elongation of anaphase astral MTs toward the cortex, suggesting that EB1 and dynactin are both required for communication between the MA and the cortex. Targeted disruption of the interaction between EB1 and p150glued suppressed anaphase astral MT elongation and resulted in a delay of cytokinesis that could not be overcome by manipulation of the asters toward the cortex. We conclude that EB1 and dynactin participate in stimulation of the cleavage furrow, and their interaction promotes elongation of astral MTs at anaphase onset.  相似文献   

4.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

5.
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.  相似文献   

6.
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.  相似文献   

7.
The proper segregation of chromosomes during meiosis or mitosis requires the assembly of well organized spindles. In many organisms, meiotic spindles lack centrosomes. The formation of such acentrosomal spindles seems to involve first assembly or capture of microtubules (MTs) in a random pattern around the meiotic chromosomes and then parallel bundling and bipolar organization by the action of MT motors and other proteins. Here, we describe the structure, distribution, and function of KLP-18, a Caenorhabditis elegans Klp2 kinesin. Previous reports of Klp2 kinesins agree that it concentrates in spindles, but do not provide a clear view of its function. During prometaphase, metaphase, and anaphase, KLP-18 concentrates toward the poles in both meiotic and mitotic spindles. Depletion of KLP-18 by RNA-mediated interference prevents parallel bundling/bipolar organization of the MTs that accumulate around female meiotic chromosomes. Hence, meiotic chromosome segregation fails, leading to haploid or aneuploid embryos. Subsequent assembly and function of centrosomal mitotic spindles is normal except when aberrant maternal chromatin is present. This suggests that although KLP-18 is critical for organizing chromosome-derived MTs into a parallel bipolar spindle, the order inherent in centrosome-derived astral MT arrays greatly reduces or eliminates the need for KLP-18 organizing activity in mitotic spindles.  相似文献   

8.
The cytokinesis phase, or C phase, of the cell cycle results in the separation of one cell into two daughter cells after the completion of mitosis. Although it is known that microtubules are required for proper positioning of the cytokinetic furrow [1] [2], the role of pre-anaphase microtubules in cytokinesis has not been clearly defined for three key reasons. First, inducing microtubule depolymerization or stabilization before the onset of anaphase blocks entry into anaphase and cytokinesis via the spindle checkpoint [3]. Second, microtubule organization changes rapidly at anaphase onset as the mitotic kinase, Cdc2-cyclin B, is inactivated [4]. Third, the time between the onset of anaphase and the initiation of cytokinesis is very short, making it difficult to unambiguously alter microtubule polymer levels before cytokinesis, but after inactivation of the spindle checkpoint. Here, we have taken advantage of the discovery that microinjection of antibodies to the spindle checkpoint protein Mad2 (mitotic arrest deficient) in prometaphase abrogates the spindle checkpoint, producing premature chromosome separation, segregation, and normal cytokinesis [5] [6]. To test the role of pre-anaphase microtubules in cytokinesis, microtubules were disassembled in prophase and prometaphase cells, the cells were then injected with anti-Mad2 antibodies and recorded through C phase. The results show that exit from mitosis in the absence of microtubules triggered a 50 minute period of cortical contractility that was independent of microtubules. Furthermore, upon microtubule reassembly during this contractile C-phase period, approximately 30% of the cells underwent chromosome poleward movement, formed a midzone microtubule complex, and completed cytokinesis.  相似文献   

9.
The spindle of the colonial diatom Fragilaria contains two distinct sets of spindle microtubules (MTs): (a) MTs comprising the central spindle, which is composed of two half-spindles interdigitated to form a region of "overlap"; (b) MTs which radiate laterally from the poles. The central spindles from 28 cells are reconstructed by tracking each MT of the central spindle through consecutive serial sections. Because the colonies of Fragilaria are flat ribbons of contiguous cells (clones), it is possible, by using single ribbons of cells, to compare reconstructed spindles at different mitotic stages with minimal intercellular variability. From these reconstructions we have determined: (a) the changes in distribution of MTs along the spindle during mitosis; (b) the change in the total number of MTs during mitosis; (c) the length of each MT (measured by the number of sections each traverses) at different mitotic stages; (d) the frequency of different classes of MTs (i.e., free, continuous, etc.); (e) the spatial arrangement of MTs from opposite poles in the overlap; (f) the approximate number of MTs, separate from the central spindle, which radiate from each spindle pole. From longitudinal sections of the central spindle, the lengths of the whole spindle, half-spindle, and overlap were measured from 80 cells at different mitotic stages. Numerous sources of error may create inaccuracies in these measurements; these problems are discussed. The central spindle at prophase consists predominantly of continuous MTs (pole to pole). Between late prophase and prometaphase, spindle length increases, and the spindle is transformed into two half-spindles (mainly polar MTs) interdigitated to form the overlap. At late anaphase-telophase, the overlap decreases concurrent with spindle elongation. Our interpretation is that the MTs of the central spindle slide past one another at both late prophase and late anaphase. These changes in MT distribution have the effect of elongating the spindle and are not involved in the poleward movement of the chromosomes. Some aspects of tracking spindle MTs, the interaction of MTs in the overlap, formation of the prophase spindle, and our interpretation of rearrangements of MTs, are discussed.  相似文献   

10.
Elongation of the mitotic spindle during anaphase B contributes to chromosome segregation in many cells. Here, we quantitatively test the ability of two models for spindle length control to describe the dynamics of anaphase B spindle elongation using experimental data from Drosophila embryos. In the slide-and-flux-or-elongate (SAFE) model, kinesin-5 motors persistently slide apart antiparallel interpolar microtubules (ipMTs). During pre-anaphase B, this outward sliding of ipMTs is balanced by depolymerization of their minus ends at the poles, producing poleward flux, while the spindle maintains a constant length. Following cyclin B degradation, ipMT depolymerization ceases so the sliding ipMTs can push the poles apart. The competing slide-and-cluster (SAC) model proposes that MTs nucleated at the equator are slid outward by the cooperative actions of the bipolar kinesin-5 and a minus-end-directed motor, which then pulls the sliding MTs inward and clusters them at the poles. In assessing both models, we assume that kinesin-5 preferentially cross-links and slides apart antiparallel MTs while the MT plus ends exhibit dynamic instability. However, in the SAC model, minus-end-directed motors bind the minus ends of MTs as cargo and transport them poleward along adjacent, parallel MT tracks, whereas in the SAFE model, all MT minus ends that reach the pole are depolymerized by kinesin-13. Remarkably, the results show that within a narrow range of MT dynamic instability parameters, both models can reproduce the steady-state length and dynamics of pre-anaphase B spindles and the rate of anaphase B spindle elongation. However, only the SAFE model reproduces the change in MT dynamics observed experimentally at anaphase B onset. Thus, although both models explain many features of anaphase B in this system, our quantitative evaluation of experimental data regarding several different aspects of spindle dynamics suggests that the SAFE model provides a better fit.  相似文献   

11.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

12.
As anaphase began, mitotic PtK1 and newt lung epithelial cells were permeabilized with digitonin in permeabilization medium (PM). Permeabilization stopped cytoplasmic activity, chromosome movement, and cytokinesis within about 3 min, presumably due to the loss of endogenous ATP. ATP, GTP, or ATP-gamma-S added in the PM 4-7 min later restarted anaphase A while kinetochore fibers shortened. AMPPNP could not restart anaphase A; ATP was ineffective if the spindle was stabilized in PM + DMSO. Cells permeabilized in PM + taxol varied in their response to ATP depending on the stage of anaphase reached: one mid-anaphase cell showed initial movement of chromosomes back to the metaphase plate upon permeabilization but later, anaphase A resumed when ATP was added. Anaphase A was also reactivated by cold PM (approximately 16 degrees C) or PM containing calcium (1-10 mM). Staining of fixed cells with antitubulin showed that microtubules (MTs) were relatively stable after permeabilization and MT assembly was usually promoted in asters. Astral and kinetochore MTs were sensitive to MT disassembly conditions, and shortening of kinetochore MTs always accompanied reactivation of anaphase A. Interphase and interzonal spindle MTs were relatively stable to cold and calcium until extraction of cells was promoted by longer periods in the PM, or by higher concentrations of detergent. Since we cannot envisage how both cold treatment or relatively high calcium levels can reactivate spindle motility in quiescent, permeabilized, and presumably energy-depleted cells, we conclude that anaphase A is powered by energy stored in the spindle. The nucleotide triphosphates effective in reactivating anaphase A could be necessary for the kinetochore MT disassembly without which anaphase movement cannot proceed.  相似文献   

13.
Spindle elongation segregates chromosomes and occurs in anaphase, an essential step in mitosis. Dynein-mediated pulling forces position the spindle, but their role in anaphase is a matter of debate. Here, we demonstrate that dynein is responsible for rapid spindle elongation in the model fungus Ustilago maydis. We show that initial slow elongation is supported by kinesin-5, which is located in the spindle mid-zone. When the spindle reaches approximately 2 microm in length, the elongation rate increases four-fold. This coincides with the appearance of long and less-dynamic microtubules (MTs) at each pole that accumulate dynein at their tips. Laser-mediated nanosurgery revealed that these MTs exert pulling forces in control cells, but not in dynein mutants. In addition, dynein mutants undergo initial slow anaphase, but fail to establish less-dynamic MTs and do not perform rapid spindle elongation, suggesting that dynein drives anaphase B. This is most likely mediated by cortical sliding of astral MTs along stationary dynein, which is off-loaded from the MT plus-end to the cortex.  相似文献   

14.
INTRODUCTION: During anaphase B in mitosis, polymerization and sliding of overlapping spindle microtubules (MTs) contribute to the outward movement the spindle pole bodies (SPBs). To probe the mechanism of spindle elongation, we combine fluorescence microscopy, photobleaching, and laser microsurgery in the fission yeast Schizosaccharomyces pombe. RESULTS: We demonstrate that a green laser cuts intracellular structures in yeast cells with high spatial specificity. By using laser microsurgery, we cut mitotic spindles labeled with GFP-tubulin at various stages of anaphase B. Although cutting generally caused early anaphase spindles to disassemble, midanaphase spindle fragments continued to elongate. In particular, when the spindle was cut near a SPB, the larger spindle fragment continued to elongate in the direction of the cut. Photobleach marks showed that sliding of overlapping midzone MTs was responsible for the elongation of the spindle fragment. Spindle midzone fragments not connected to either of the two spindle poles also elongated. Equatorial microtubule organizing center (eMTOC) activity was not affected in cells with one detached pole but was delayed or absent in cells with two detached poles. CONCLUSIONS: These studies reveal that the spindle midzone is necessary and sufficient for the stabilization of MT ends and for spindle elongation. By contrast, SPBs are not required for elongation, but they contribute to the attachment of the nuclear envelope and chromosomes to the spindle, and to cell cycle progression. Laser microsurgery provides a means by which to dissect the mechanics of the spindle in yeast.  相似文献   

15.
Constructing a mitotic spindle requires the coordinated actions of several kinesin motor proteins. Here, we have visualized the dynamics of five green fluorescent protein (GFP)-tagged mitotic kinesins (class 5, 6, 8, 13, and 14) in live Drosophila Schneider cell line (S2), after first demonstrating that the GFP-tag does not interfere with the mitotic functions of these kinesins using an RNA interference (RNAi)-based rescue strategy. Class 8 (Klp67A) and class 14 (Ncd) kinesin are sequestered in an active form in the nucleus during interphase and engage their microtubule targets upon nuclear envelope breakdown (NEB). Relocalization of Klp67A to the cytoplasm using a nuclear export signal resulted in the disassembly of the interphase microtubule array, providing support for the hypothesis that this kinesin class possesses microtubule-destabilizing activity. The interactions of Kinesin-5 (Klp61F) and -6 (Pavarotti) with microtubules, on the other hand, are activated and inactivated by Cdc2 phosphorylation, respectively, as shown by examining localization after mutating Cdc2 consensus sites. The actions of microtubule-destabilizing kinesins (class 8 and 13 [Klp10A]) seem to be controlled by cell cycle-dependent changes in their localizations. Klp10A, concentrated on microtubule plus ends in interphase and prophase, relocalizes to centromeres and spindle poles upon NEB and remains at these sites throughout anaphase. Consistent with this localization, RNAi analysis showed that this kinesin contributes to chromosome-to-pole movement during anaphase A. Klp67A also becomes kinetochore associated upon NEB, but the majority of the population relocalizes to the central spindle by the timing of anaphase A onset, consistent with our RNAi result showing no effect of depleting this motor on anaphase A. These results reveal a diverse spectrum of regulatory mechanisms for controlling the localization and function of five mitotic kinesins at different stages of the cell cycle.  相似文献   

16.
The mitotic spindle contains several classes of microtubules (MTs) whose lengths change independently during mitosis. Precise control over MT polymerization and depolymerization during spindle formation, anaphase chromosome movements, and spindle breakdown is necessary for successful cell division. This model proposes the site of addition and removal of MT subunits in each of four classes of spindle MTs at different stages of mitosis, and suggests how this addition and removal is controlled. We propose that spindle poles and kinetochores significantly alter the assembly-disassembly kinetics of associated MT ends. Control of MT length is further modulated by localized forces affecting assembly and disassembly kinetics of individual sets of MTs.  相似文献   

17.
The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends. The distribution of Kif2A was limited to the distal ends of the central spindle through Aurora B–dependent phosphorylation and exclusion from the spindle midzone. Overactivation or inhibition of Kif2A affected interchromosomal MT length and disorganized the central spindle, resulting in uncoordinated cell division. Experimental data and model simulations suggest that the steady-state length of the central spindle and its symmetric position between segregating chromosomes are predominantly determined by the Aurora B activity gradient. On the basis of these results, we propose a robust self-organization mechanism for central spindle formation.  相似文献   

18.
We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)-inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.  相似文献   

19.
The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome segregation. The spindle accomplishes its function using forces generated by microtubules (MTs) and multiple molecular motors, but how these forces are integrated remains unclear, since the temporal activation profiles and the mechanical characteristics of the relevant motors are largely unknown. Here, we developed a computational search algorithm that uses experimental measurements to ‘reverse engineer’ molecular mechanical machines. Our algorithm uses measurements of length time series for wild‐type and experimentally perturbed spindles to identify mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles. The search eliminated thousands of possible models and identified six distinct strategies for MT–motor integration that agree with available data. Many features of these six predicted strategies are conserved, including a persistent kinesin‐5‐driven sliding filament mechanism combined with the anaphase B‐specific inhibition of a kinesin‐13 MT depolymerase on spindle poles. Such conserved features allow predictions of force–velocity characteristics and activation–deactivation profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the mechanisms of prometaphase and anaphase spindle elongation suggest future experiments.  相似文献   

20.
The coordination between late mitotic events such as poleward chromosome motion, spindle elongation, DNA decondensation, and nuclear envelope reformation (NER) is crucial for the completion of chromosome segregation at the anaphase-telophase transition. Mitotic exit is driven by a decrease of Cdk1 kinase activity and an increase of PP1/PP2A phosphatase activities. More recently, Aurora kinases have also emerged as master regulators of late mitotic events and cytokinesis. Aurora A is mainly associated with spindle poles throughout mitosis and midbody during telophase, whereas Aurora B re-localizes from centromeres in early mitosis to the spindle midzone and midbody as cells progress from anaphase to the completion of cytokinesis. Functional studies, together with the identification of a phosphorylation gradient during anaphase, established Aurora B as a major player in the organization of the spindle midzone and in the spatiotemporal coordination between chromosome segregation and NER. Aurora A has been less explored, but a cooperative role in spindle midzone stability has also been proposed, implying that both Aurora A and B contribute to accurate chromosome segregation during mitotic exit. Here, we review the roles of the Aurora kinases in the regulation of late mitotic events and discuss how they work together with other mitotic players to ensure an error-free mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号