首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To determine the ability of radiation to modulate mesangial cell expression of various molecules involved in promoting extracellular matrix (ECM) accumulation [fibronectin, plasminogen activator-inhibitor 1 (Pai1), and tissue inhibitor of metalloproteinase-2 (Timp2)] and degradation (Tgfb, plasminogen activators u-PA or t-PA, matrix metalloproteinases Mmp2 and Mmp9), primary cultures of rat mesangial cells (passage number 6-11) were placed in serum-free medium 24 h prior to irradiation with single doses of 0.5-20 Gy (137)Cs gamma rays. After irradiation, cells were maintained in serum-free medium for a further 48 h. Irradiation of quiescent mesangial cells resulted in significant (P < 0.05) time- and dose-dependent increases in Fn and Pai1 mRNA and/or immunoreactive protein. Despite an increase in Tgfb1 mRNA, there was little evidence for an increase in total Tgfb protein. Indeed, active levels remained unaltered after irradiation. Irradiation led to differential changes in MMP expression; active Mmp2 levels increased, while Mmp9 levels appeared unaltered. In addition, secretion of plasminogen activators into the medium was unchanged after irradiation, while secretion of Timp2 increased. We conclude that irradiating mesangial cells leads to altered production of various molecules involved in accumulation and degradation of extracellular matrix.  相似文献   

2.
Zeng Y  Yang X  Wang J  Fan J  Kong Q  Yu X 《PloS one》2012,7(1):e30312
Autophagy is a lysosomal degradation pathway that is essential for cell survival and tissue homeostasis. However, limited information is available about autophagy in aristolochic acid (AA) nephropathy. In this study, we investigated the role of autophagy and related signaling pathway during progression of AAI-induced injury to renal tubular epithelial cells (NRK52E cells). The results showed that autophagy in NRK52E cells was detected as early as 3-6 hrs after low dose of AAI (10 μM) exposure as indicated by an up-regulated expression of LC3-II and Beclin 1 proteins. The appearance of AAI-induced punctated staining of autophagosome-associated LC3-II upon GFP-LC3 transfection in NRK52E cells provided further evidence for autophagy. However, cell apoptosis was not detected until 12 hrs after AAI treatment. Blockade of autophagy with Wortmannin or 3-Methyladenine (two inhibitors of phosphoinositede 3-kinases) or small-interfering RNA knockdown of Beclin 1 or Atg7 sensitized the tubular cells to apoptosis. Treatment of NRK52E cells with AAI caused a time-dependent increase in extracellular signal-regulated kinase 1 and 2 (ERK1/2) activity, but not c-Jun N-terminal kinase (JNK) and p38. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased AAI-induced autophagy that was accompanied by an increased apoptosis. Taken together, our study demonstrated for the first time that autophagy occurred earlier than apoptosis during AAI-induced tubular epithelial cell injury. Autophagy induced by AAI via ERK1/2 pathway might attenuate apoptosis, which may provide a protective mechanism for cell survival under AAI-induced pathological condition.  相似文献   

3.
4.
Numb was originally discovered as an intrinsic cell fate determinant in Drosophila by antagonizing Notch signaling. The present study is to characterize the role of Numb in oxidative stress-induced apoptosis of renal proximal tubular cells. Exposure of NRK52E cells to puromycin aminonucleoside (PA) resulted in caspase 3-dependent apoptosis. Numb expression was downregulated by PA in a time- and dose-dependent manner. Knocking down endogenous Numb by siRNA sensitized NRK52E cells to PA-induced apoptosis, whereas overexpressing Numb protected NRK52E cells from PA-induced apoptosis. Moreover, PA activated Notch signaling in a time- and dose-dependent manner as indicated by increased expression of the intracellular domain of Notch and Hes-1. Notch signaling inhibitor DAPT significantly attenuated Numb siRNA-augmented apoptosis. On the other hand, overexpression of intracellular domain of Notch1 could reverse the protective effect of Numb on PA-induced apoptosis. Taken together, our data demonstrated that, in renal proximal tubular cells, Numb functions as a protective molecule on PA-induced apoptosis through antagonizing Notch signaling activity.  相似文献   

5.
6.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways and cell cycle progression following exposure to ionizing radiation is largely unknown. Loss of K-RAS D13 expression in parental HCT116 colorectal carcinoma cells blunted basal ERK1/2, AKT and JNK1/2 activity by ~70%. P38 activity was not detected. Deletion of the allele to express activated K-RAS nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells, but did not restore or alter basal JNK1/2 and p38 activity. In parental cells radiation (1 Gy) caused stronger ERK1/2 pathway activation compared to that of the PI3K/AKT pathway. In H-RAS V12 cells radiation caused stronger PI3K/AKT pathway activation compared to that of the ERK1/2 pathway. Radiation (1 Gy) promoted S phase entry in parental HCT116 cells within 24h, but not in either HCT116 cells lacking K-RAS D13 expression or in H-RAS V12 cells. In parental cells radiation-stimulated S phase entry correlated with ERK1/2-, JNK1/2- and PI3K-dependent increased expression of cyclin D1 and cyclin A, and to a lesser extent cyclin E, 6–24 h after exposure. Cyclin A and cyclin D1 expression were not increased by radiation in cells lacking K-RAS D13 expression or in H-RAS V12 cells. Radiation (1 Gy) modestly enhanced expression of p53, hMDM2 and p21 in parental cells 2-6h after exposure, which was abolished in cells lacking K-RAS D13 expression. Introduction of H-RAS V12 into cells lacking mutant active RAS partially restored radiation-induced expression of p21 and p53, and enhanced the induction of hMDM2 beyond that observed in parental cells. Collectively, our findings argue that the coordinated activation of multiple signaling pathways, in particular ERK1/2 and JNK1/2, by radiation is required to elevate the expression of G1 and S phase cyclin proteins and to promote S phase entry in human colon carcinoma cells expressing wild type p53. In HCT116 cells H-RAS V12 promotes hMDM2 expression after radiation exposure which correlates with reduced p53 expression and increased cell survival.  相似文献   

7.
Inhibition of angiotensin II (AII) can ameliorate the severity of experimental radiation nephropathy. To determine the ability of AII to modulate mesangial cell phenotype, primary cultures of rat mesangial cells (passage number 6-11) were placed in serum-free medium 24 h prior to addition of AII (10(-9)-10(-5) M); control cells received serum-free medium alone. Cells were maintained in serum-free medium for a further 48 h. Addition of AII to quiescent mesangial cells resulted in significant (P < 0.05) time- and/or dose-dependent increases in Fn and Pail mRNA and/or immunoreactive protein. No significant change was observed in terms of Tgfb1 mRNA. A significant increase in total Tgfb1 protein (P < 0.01) secreted by AII-treated mesangial cells was noted; however, this increase was primarily in terms of latent TGF-beta; the relative proportion of active TGF-beta secreted decreased after AII incubation. AII had no effect on the activity of Mmp2 or Mmp9. However, AII-treated mesangial cells did show an increase in the amount of tissue inhibitor of metalloproteinase-2 (Timp2) immunoreactive protein secreted into the medium. The AII-mediated increase in Pail mRNA levels appeared due in part to activation of the AT1 receptor and was independent of TGF-beta; co-incubation with TGF-beta-neutralizing antibody failed to inhibit the AII-mediated increase in Pail mRNA. Thus mesangial cells treated with AII exhibit a pro-fibrosis phenotype.  相似文献   

8.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that is a notable biomarker of kidney injury. However, it is not clear how LPA is produced in renal cells. In this study, we explored LPA generation and its enzymatic pathway in a rat kidney-derived cell, NRK52E cells. Culturing of NRK52E cells with acyl lysophosphatidylcholine (acyl LPC), or lyso-platelet activating factor (lysoPAF, alkyl LPC) was resulted in increased extracellular level of choline, co-product with LPA by lysophospholipase D (lysoPLD). Their activities were enhanced by addition of calcium ions to the cell culture medium, but failed to be inhibited by S32826, an autotaxin (ATX)-specific inhibitor. Liquid chromatography-tandem mass spectrometric analysis revealed the small, but significant extracellular production of acyl LPA/cyclic phosphatidic acid (cPA) and alkyl LPA/cPA. The mRNA expression of glycerophosphodiesterase (GDE) 7 with lysoPLD activity was elevated in confluent NRK52E cells cultured over 3 days. GDE7 plasmid-transfection of NRK52E cells augmented both extracellular and intracellular productions of LPAs (acyl and alkyl) as well as extracellular productions of cPAs (acyl and alkyl) from exogenous LPCs (acyl and alkyl). These results suggest that intact NRK52E cells are able to produce choline and LPA/cPA from exogenous LPCs through the enzymatic action of GDE7 that is located on the plasma membranes and intracellular membranes.  相似文献   

9.
10.
Advanced glycation end products (AGEs) play an important role in the development of angiopathy in diabetes mellitus and atherosclerosis. Here, we show that adducts of N(epsilon)-(carboxymethyl)lysine (CML), a major AGE, and bovine serum albumin (CML-BSA) stimulated gamma-glutamylcysteine synthetase (gamma-GCS), which is a key enzyme of glutathione (GSH) synthesis, in RAW264.7 mouse macrophage-like cells. CML-BSA stimulated the expression of gamma-GCS heavy subunit (h) time- and dose-dependently and concomitantly increased GSH levels. CML-BSA also stimulated DNA-binding activity of activator protein-1 (AP-1) within 3h, but the stimulatory effect decreased in 5h, and nuclear factor-kappaB (NF-kappaB) with a peak activity at 1h and the stimulatory effect diminished in 3h. Studies of luciferase activity of the gamma-GCSh promoter showed that deletion and mutagenesis of the AP-1-site abolished CML-BSA-induced up-regulation, while that of NF-kappaB-site did not affect CML-BSA-induced activity. CML-BSA also stimulated the activity of protein kinase C, Ras/Raf-1, and MEK/ERK1/2. Inhibition of ERK1/2 abolished CML-BSA-stimulated AP-1 DNA-binding activity and gamma-GCSh mRNA expression. Our results suggest that induction of gamma-GCS by CML adducts seems to increase the defense potential of cells against oxidative stress produced during glycation processes.  相似文献   

11.
The effect of regucalcin (RC), a regulatory protein in intracellular signaling pathway, on the gene expression of various mineral ion transport-related proteins was investigated using the cloned normal rat kidney proximal tubular epithelial NRK52E cells overexpressing RC. NRK52E cells (wild-type) and stable RC/pCXN2 transfectant were cultured for 72 h in medium containing 5% bovine serum (BS) to obtain subconfluent monolayers. After culture for 72 h, cells were further cultured 24-72 h in a medium containing either vehicle, aldosterone (10(-8) or 10(-7) M), or parathyroid hormone (PTH) (1-34) (10(-8) or 10(-7) M) without BS. RC was markedly localized in the nucleus of transfectants. Overexpression of RC caused a significant increase in rat outer medullary K(+) channel (ROMK) mRNA expression, while it caused a remarkable decrease in L-type Ca(2+) channel and calcium-sensing receptor (CaR) mRNA expressions. Overexpression of RC did not have an effect on epithelial sodium channel (ENaC), Na, K-ATPase (alpha-subunit), Type II Na-Pi cotransporter (NaPi-IIa), angiotensinogen, Na(+)-Ca(2+) exchanger, and glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNA expressions. Hormonal effect on gene expression, moreover, was examined. Culture with aldosterone (10(-8) or 10(-7) M) caused a significant increase in ENaC, Na, K-ATPase, and ROMK mRNA expressions in the wild-type cells. Those increases were weakened in the transfectants. Culture with PTH (10(-8) or 10(-7) M) significantly decreased NaPi-IIa mRNA expression in the wild-type cells. This effect was not altered in the transfectants. PTH significantly decreased angiotensinogen mRNA expression in the wild-type cells and the transfectants, while aldosterone had no effect. Culture with PTH (10(-8) or 10(-7) M) caused a significant decrease in L-type Ca(2+) channel and CaR mRNA expressions in the wild-type cells, while the hormone significantly increased Na(+)-Ca(2+) exchanger mRNA expression. The effects of PTH on L-type Ca(2+) channel, CaR, and Na(+)-Ca(2+) exchanger mRNA expressions were also seen in the transfectants. This study demonstrates that overexpression of RC caused a remarkable increase in its nuclear localization, and that it has suppressive effects on the gene expression of L-type Ca(2+) channel or CaR, which regulates intracellular Ca(2+) signaling, among various regulator proteins for mineral ions in NRK52E cells.  相似文献   

12.
In this study, we evaluated the possibility that the anti-proliferative effects of paclitaxel on vascular smooth muscle cells (VSMCs) of the rat might be due to the induction of HO-1 gene expression. Treatment of the cells with paclitaxel resulted in marked time- and dose-dependent inductions of HO-1 mRNA, followed by corresponding increases in HO-1 protein expression and HO enzymatic activities. Furthermore, paclitaxel rapidly activated the JNK, ERK, and p38 mitogen-activated protein kinase pathways. A specific inhibitor of JNK, SP600125, abolished paclitaxel-induced HO-1 mRNA expression, whereas PD98059, a specific inhibitor of ERK, and SB203580, a specific inhibitor of p38, had no significant effect. Finally, the suppression of platelet-derived growth factor induced VSMC proliferation was abolished by the HO inhibitor, ZnPP, as well as by the CO scavenger, hemoglobin. These results demonstrated that paclitaxel induces the expression of HO-1 via the JNK pathway in VSMC and that HO-1 expression might be responsible for the anti-proliferative effect of paclitaxel on VSMC.  相似文献   

13.
14.
15.
We investigated the role of the cdk inhibitor protein p21(Cip-1/WAF1/MDA6) (p21) in the ability of MAPK pathway inhibition to enhance radiation-induced apoptosis in A431 squamous carcinoma cells. In carcinoma cells, ionizing radiation (2 Gy) caused both primary (0-10 min) and secondary (90-240 min) activations of the MAPK pathway. Radiation induced p21 protein expression in A431 cells within 6 h via secondary activation of the MAPK pathway. Within 6 h, radiation weakly enhanced the proportion of cells in G(1) that were p21 and MAPK dependent, whereas the elevation of cells present in G(2)/M at this time was independent of either p21 expression or MAPK inhibition. Inhibition of the MAPK pathway increased the proportion of irradiated cells in G(2)/M phase 24-48 h after irradiation and enhanced radiation-induced apoptosis. This correlated with elevated Cdc2 tyrosine 15 phosphorylation, decreased Cdc2 activity, and decreased Cdc25C protein levels. Caffeine treatment or removal of MEK1/2 inhibitors from cells 6 h after irradiation reduced the proportion of cells present in G(2)/M phase at 24 h and abolished the ability of MAPK inhibition to potentiate radiation-induced apoptosis. These data argue that MAPK signaling plays an important role in the progression/release of cells through G(2)/M phase after radiation exposure and that an impairment of this progression/release enhances radiation-induced apoptosis. Surprisingly, the ability of irradiation/MAPK inhibition to increase the proportion of cells in G(2)/M at 24 h was found to be dependent on basal p21 expression. Transient inhibition of basal p21 expression increased the control level of apoptosis as well as the abilities of both radiation and MEK1/2 inhibitors to cause apoptosis. In addition, loss of basal p21 expression significantly reduced the capacity of MAPK inhibition to potentiate radiation-induced apoptosis. Collectively, our data argue that MAPK signaling and p21 can regulate cell cycle checkpoint control in carcinoma cells at the G(1)/S transition shortly after exposure to radiation. In contrast, inhibition of MAPK increases the proportion of irradiated cells in G(2)/M, and basal expression of p21 is required to maintain this effect. Our data suggest that basal and radiation-stimulated p21 may play different roles in regulating cell cycle progression that affect cell survival after radiation exposure.  相似文献   

16.
17.
18.
The role of mitochondrial KATP (mitoKATP) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoKATP opener, diazoxide, and the mitoKATP blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoKATP channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.  相似文献   

19.

Actinomycin D (ActD) was the first anticancer antibiotic approved for the management of human cancers. However, the notorious toxicity profile limits its widespread application in cancers, including cancers of the aerodigestive tract. Recent studies show that combining low-dose ActD with existing chemotherapies could potentially protect normal cells from the toxicity of chemotherapy drugs through p53 activation (cyclotherapy). An understanding of ActD’s effect on p53 signaling is critical for the meaningful application of ActD in cyclotherapy-based combinations. This study evaluated the anti-tumor efficacy and mechanism of action of ActD in aerodigestive tract cancers. We found that ActD strongly inhibited the growth of a panel of aerodigestive tract cancer cell lines and induced efficient apoptosis, although the sensitivity varies among cell lines. The IC50 values of ActD spanned between 0.021 and 2.96?nM. Mechanistic studies revealed that ActD increased the expression of total and phosphorylated p53 (ser15) in a time- and dose-dependent manner. Moreover, ActD-induced apoptosis is dependent on p53 in cells expressing wild-type p53 and that ActD induced context-dependent differential expression of downstream targets p21 and PUMA without significant effects on p27. In the final analysis, this study revealed that p53-p21 is the predominant pathway activated by low-dose ActD, supporting further development of ActD in cyclotherapy.

  相似文献   

20.
In this study, the effect of lipopolysaccharide (LPS) on protein synthesis (PS) and intracellular signaling factors that regulate it have been investigated in C2C12 murine-derived myotubes. In particular, the role of Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinases (MAPKs) [p38 and extracelluar regulated protein kinase (ERK1/2)] have been examined. The direct effect of LPS on PS was measured at 3 and 18 h. LPS significantly decreased PS at 3 h but not at the 18-h time point. This effect was preceded by decreased Akt phosphorylation at 5 and 30 min after LPS administration. The mTOR phosphorylation exhibited a long time dose-dependent increase at all the time points. Similarly, the activity-related phosphorylation of p38 and ERK1/2 significantly increased in a time- and dose-dependent manner at all the time points. Polymyxin B abolished the LPS-induced decrease in PS rate. The phosphatidylinositol 3-kinase inhibitor LY-0294002 in combination with LPS significantly decreased the rate of PS by 81% and alone by 66%, respectively, for the 3- and 18-h time points, whereas p38 and ERK inhibitors in combination with LPS significantly decreased the rate PS rate at the 18-h time point by 41% and 59%, respectively, compared with control cells. In conclusion, LPS alone transiently decreased the rate of PS by 50% at 3 h; this effect is most likely mediated via the Toll-like receptor 4 (TLR4)-Akt/mTOR pathway, and both p38 and ERK when inhibited in the presence of LPS at 3 h have a similar effect in preventing the LPS-induced reduction in PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号