首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study addressed the problem of how soft structures maintain approximately the same relative positional relationships during long bone growth. Attachments of the popliteus muscle, semitendinosus tendon, medial collateral knee ligament, and extensor retinaculum were examined histologically in rabbits, aged 2-60 days, to determine the manner in which soft structures attached to long bones during growth. Soft structures inserted principally into fibrous periosteum or perichondrium in the age range studied. However, an extensive collagen fiber framework within the cellular periosteum and perichondrium, present by at least 2 days of age, linked the fibrous periosteum or perichondrium to subjacent bone or cartilage. Maturation of soft tissue-bone interfaces was viewed from two related perspectives. The first stressed temporal patterning of cartilage and bone differentiation. The second emphasized incorporation of attachments of soft structures into bone and cartilage matrices during growth and remodeling. Differentiation and remodeling of bone and cartilage varied not only with age, but also between regions of attachment of single muscles and ligaments. Insertion regions were characterized by the presence of coarse-fibered periosteal bone and chondroid bone, both morphologically intermediate between fibrocartilage and lamellar bone. These results provide evidence that periosteal attachments, characterizing the soft-tissue bone interface, are a necessary structural prerequisite for compensatory movement and invariance of the relative positions of muscles, tendons, and ligaments during long bone growth.  相似文献   

2.
The structure of the epiphyseal cartilage of the bullfrog Rana catesbeiana and its role in the growth of long bones were examined. The epiphyseal cartilage was inserted into the end of a tubular bone shaft, defining three regions: articular cartilage, lateral articular cartilage and growth cartilage. Joining the lateral cartilage to the bone was a fibrous layer of periosteum, rich in blood vessels. Osteoblasts with alkaline phosphatase activity were found on the surface of the periosteal bone, which presented a fibrous non-mineralised tip. The growth cartilage was inside the bone. The proliferative chondrocytes presented perpendicular separation of daughter cells and there was no columnar arrangement of the cells. Furthermore, chondrocyte hypertrophy was not associated with either calcification or endochondral ossification, in apparent contrast to the avian and mammalian models. Finally, there was no reinforcement system capable of directing cell volume increase into longitudinal growth. Since bone extension depends on the intramembranous ossification of the periosteum, the growth cartilage is inside and not at the end of the bone and the cells in the growth cartilage show no columnar arrangement and separate in a direction perpendicular to the long bone axis, we conclude that the growth cartilage mainly contributes to the radial expansion of the bone.  相似文献   

3.
Summary The distribution of types I, II, III, V and IX collagens in healing fractures of the rabbit tibia has been demonstrated by immunofluorescent techniques. It has also been shown that the mechanical stability of the healing fracture affects both the distribution and types of the collagens present.The initial fibrous matrix contains types III and V collagens; type I collagen was only located in this matrix if unfixed tissue was used. In mechanically stable fractures, cancellous bone forms over the entire periosteal surface by 5–7 days; type I collagen is laid down within the previous fibrous matrix. The trabeculae are heterogeneous in their collagen content. The cavities contain a matrix of types III and V collagens. Small nodules of cartilage may be present between 7 and 14 days; these contain types II and IX collagens.In mechanically unstable fractures, cancellous bone is initially formed away from the fracture gap. The fibrous tissue over the gap is replaced by cartilage; types II and IX collagens are laid down on the pre-existing fibrous matrix. The cartilage is replaced by endochondral ossification. At the ossification front, type I collagen is found around the chondrocyte lacunae of the spicules of cartilage. The new trabeculae contain a core of cartilage which is surrounded by a bone matrix of types I and V collagens.The fracture gaps are invaded by fibrous tissue, which contain types III and V collagens. This is later replaced by cancellous bone.  相似文献   

4.
5.
Despite the introduction of new surgical techniques, the treatment of cartilage defects remains challenging. Delay or complete failure of cartilage healing is associated with problems in biological regeneration. The influence of mechanical conditions on this process, however, remains unevaluated. Osteochondral defects were generated on the left femoral condyle in 18 Yucatan minipigs. After 4, 6 and 12 weeks the defect filling, trabecular orientation and bone density were compared to the intact contralateral side. The mechanical straining during this period was then analyzed using an adaptive finite element technique. Histologically, the osteochondral defects showed bone resorption at the base and bone formation from the circumference. At 12 weeks, the macroscopically healed specimens showed fibrous cartilage formation, a minimally organized trabecular structure and increased trabecular volume fraction compared to the controls (p < 0.002). The amount of cancellous, cartilagineous, and fibrous tissue and the defect size as measured in histomorphometric analysis for the three time points (4, 6 and 12 weeks) was comparable in magnitude to that predicted by finite element analysis. The simulated osteochondral healing process was not fully capable of re-establishing a hyaline-like cartilage layer. The correlation between simulation and histology allows identification of mechanical factors that appear to have a larger impact on the healing of osteochondral defects than previously considered.  相似文献   

6.
BACKGROUND: Although accumulating evidence shows that mesenchymal stem cells (MSC) are a promising cell source for articular cartilage repair, the fate of transplanted MSC has not been extensively studied. METHODS: To monitor their persistence and differentiation, we labeled uninduced MSC with a fluorescent dye, PKH26, and transplanted them, in a poly-glycolic-acid scaffold, to full-thickness defects made in the weight-bearing area of rabbit femoral trochleae with hyaluronate sheets. The fate of the labeled cells was monitored for up to 8 weeks. RESULTS: Two weeks after transplantation, immature cartilage containing collagen type II had formed. By 8 weeks, this cartilage had thinned and immunolabeling for collagen type II gradually disappeared from the basal region, which became positive for collagen type I. Most chondrocytes within the regenerated cartilage were PKH26-positive and, therefore, derived from transplanted MSC, whereas osteoblasts within the regenerated bone were a mixture of donor- and host-derived cells. The thickness of the cartilage became thinner up to 8 weeks and then remained stable up to 42 weeks after surgery. DISCUSSION: These results showed that uninduced MSC were able to survive osteochondral defects and differentiated according to the environment, making a major contribution to initial cartilage formation and a partial contribution to bone regeneration.  相似文献   

7.
Osteoarthritis (OA) involves the degeneration of articular cartilage and subchondral bone. The capacity of articular cartilage to repair and regenerate is limited. A biodegradable, fibrous scaffold containing zinc oxide (ZnO) was fabricated and evaluated for osteochondral tissue engineering applications. ZnO has shown promise for a variety of biomedical applications but has had limited use in tissue engineering. Composite scaffolds consisted of ZnO nanoparticles embedded in slow degrading, polycaprolactone to allow for dissolution of zinc ions over time. Zinc has well-known insulin-mimetic properties and can be beneficial for cartilage and bone regeneration. Fibrous ZnO composite scaffolds, having varying concentrations of 1–10 wt.% ZnO, were fabricated using the electrospinning technique and evaluated for human mesenchymal stem cell (MSC) differentiation along chondrocyte and osteoblast lineages. Slow release of the zinc was observed for all ZnO composite scaffolds. MSC chondrogenic differentiation was promoted on low percentage ZnO composite scaffolds as indicated by the highest collagen type II production and expression of cartilage-specific genes, while osteogenic differentiation was promoted on high percentage ZnO composite scaffolds as indicated by the highest alkaline phosphatase activity, collagen production, and expression of bone-specific genes. This study demonstrates the feasibility of ZnO-containing composites as a potential scaffold for osteochondral tissue engineering.  相似文献   

8.
The external auditory meatus, middle, and inner ear of the deep-diving Weddell seal (Leptonychotes weddelli) were studied with light microscopic, histological, and histochemical techniques in order to contribute to the open discussion on the orientation of this seal in the darkness of the deep Antarctic seas. The external auditory meatus is characterized by a well-developed venous plexus, single apocrine ceruminous, and numerous holocrine sebaceous glands and an incomplete tube of elastic cartilage. The tympanic membrane is comprised of two layers of radially and concentrically arranged collagen fibers and by elastic fibers which are concentrated in the outer part of the ear drum. The tympanic cavity is lined by a pseudostratified prismatic ciliated epithelium with goblet cells; a plexus of wide venous vessels marks the subepithelial lamina propria. The cochlea is about 10 mm high and forms about two and a half turns. The richly pigmented stria vascularis is well vascularized, while the cell-rich prominentia spiralis contains only single small blood vessels. The organ of Corti contains one row of inner and three rows of outer hair cells. Cells of Hensen, Claudius, and Boettcher are present. The basilar membrane is of comparatively uniform simple structure and is composed of abundant glycoproteins, proteoglycans, collagenous fibers, and the loose tissue of the tympanal layer. The spiral ligament is built up by abundant proteoglycans and a complex system of radial and concentric collagen fibers; close to the osseous wall of the bony cochlea it contains fine elastic fibers. The inner zone of the osseous wall of the cochlea strikingly contains hyaline cartilage. The thin lamina spiralis ossea is covered by a limbus spiralis with interdental cells secreting the lamina tectoria, which has a fibrous texture and contains glycoproteins and negatively charged components. J. Morphol. 234:25–36, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Articular cartilage and its supporting bone functional conditions are tightly coupled as injuries of either adversely affects joint mechanical environment. The objective of this study was set to quantitatively investigate the extent of alterations in the mechanical environment of cartilage and knee joint in presence of commonly observed osteochondral defects. An existing validated finite element model of a knee joint was used to construct a refined model of the tibial lateral compartment including proximal tibial bony structures. The response was computed under compression forces up to 2000 N while simulating localized bone damage, cartilage–bone horizontal split, bone overgrowth and absence of deep vertical collagen fibrils.Localized tibial bone damage increased overall joint compliance and substantially altered pattern and magnitude of contact pressures and cartilage strains in both tibia and femur. These alterations were further exacerbated when bone damage was combined with base cartilage split and absence of deep vertical collagen fibrils. Local bone boss markedly changed contact pressures and strain patterns in neighbouring cartilage. Bone bruise/fracture and overgrowth adversely perturbed the homeostatic balance in the mechanical environment of articulate cartilage surrounding and opposing the lesion as well as the joint compliance. As such, they potentially contribute to the initiation and development of post-traumatic osteoarthritis.  相似文献   

10.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

11.
The transition of type I and type II collagens during cartilage and bone development in the chick embryo was studied by immunofluorescence using antibodies against type I or type II collagens. Type II collagen was found in all cartilaginous structures which showed metachromatic staining. Type I collagen appeared in the perichondrium of the tibia at stage 28 and was also found in osteoid, periosteal and enchondral bone after decalcification, periosteum, and tendons, ligaments, and capsules.Using the immunohistological method it was possible to identify specific collagen types in areas undergoing rapid proliferation and collagen transition, such as diaphyseal and epiphyseal perichondrium, or in enchondral osteogenesis. During enchondral ossification type I collagen is deposited onto the eroded surface of cartilage. It partially diffuses into the cartilage matrix forming a “hybrid” collagen matrix with type II collagen, which is a site for subsequent ossification. During appositional growth of diaphyseal cartilage and differentiation of epiphyseal perichondrium into articular cartilage, perichondral cells switch from type I to type II collagen synthesis when differentiating into chondroblasts. In the transition zones, chondroblasts are imbedded in a “hybrid” matrix consisting of a mixture of type I and type II collagens.  相似文献   

12.
Differentiation and development of long bones were studied in European water frogs: Rana lessonae, R. ridibunda, and R. esculenta. The study included premetamorphic larvae (Gosner Stage 40) to frogs that were 5 years old. Femora, metatarsal bones, and proximal phalanges of the hindlimb exhibit the same pattern of periosteal bone differentiation and the same pattern of growth. Longitudinal and radial growth of these bones was studied by examination of the diaphyses and epiphyses, particularly where the edge of periosteal bone is inserted into the epiphysis. The periosteum seems to be responsible for both longitudinal and radial growth. Investigation of the formation, length, and arrangement of lines of arrested growth reveals that the first line is present only in the middle 25-35% of the length of the diaphysis of an adult bone; therefore, only the central portion of the diaphysis should be used for age estimation in skeletochronological studies. Comparison of the shapes and histological structures of epiphyses in the femur, metatarsal bones, and phalanges revealed that epiphyseal cartilages are composed of an inner and outer part. The inner metaphyseal cartilage has distinct zones and plugs the end of the periosteal bone cylinder; its role in longitudinal growth is questioned. The outer epiphyseal cartilage is composed of articular cartilages proper, in addition to lateral articular cartilages. Differences in the symmetry of the lateral articular cartilages of distal epiphyses of the femur and toes may reflect adaptations to different kinds of movements at the knee and in the foot.  相似文献   

13.
BACKGROUND: Mesenchymal stromal cells (MSC) have the potential to differentiate into distinct mesenchymal tissues including cartilage, suggesting that these cells are an attractive cell source for cartilage tissue engineering approaches. Various methods, such as using hyaluronan-based materials, have been employed to improve transplantation for repair. Our objective was to study the effects of autologous transplantation of rabbit MSC with hyaluronic acid gel sponges into full-thickness osteochondral defects of the knee. METHODS: Rabbit BM-derived MSC were cultured and expanded with fibroblast growth factor (FGF). Specimens were harvested at 4 and 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type II collagen and CD44. RESULTS: The regenerated area after autologous transplantation of hyaluronic acid gel sponge loaded with MSC into the osteochondral defect at 12 weeks after surgery showed well-repaired cartilage tissue, resembling the articular cartilage of the surrounding structure, of which the histologic score was significantly better than that of the untreated osteochondral defect. In the regenerated cartilage, type II collagen was found in the pericellular matrix of regenerative chondrocytes, while CD44 expression in the regenerative tissue could not be revealed. DISCUSSION: These data suggest that the autologous transplantation of MSC embedded in hyaluronan-based material may support chondrogenic differentiation and be useful for osteochondral defect repair.  相似文献   

14.
Diffusion chambers containing bone marrow cells from adult rats were implanted intraperitoneally into rat hosts and cultured in vivo for up to 64 days. Biochemical and histological analyses of the contents of the chambers demonstrate that a connective tissue consisting of bone, cartilage and fibrous tissues is formed by precursor cells present in marrow stroma. The amounts of osteogenic tissue and DNA are directly correlated with time of implantation and with number of cells inoculated. In the chambers there is initial formation of fibrous tissue which is strongly reactive to collagen type III, laminin and fibronectin. In areas of osteogenesis which appear later within this fibrous anlage, expression of collagen type III, laminin and fibronectin decrease and collagen types I and II increase in association with bone and cartilage respectively. Where osteogenesis does not develop, fibrous tissue continues to express collagen type III. The sequential expression of the different extracellular matrix components is similar to that previously observed during osteogenic differentiation in embryonic and adult developmental systems. It is concluded that the formation of fibrous and osteogenic tissues in diffusion chambers by precursor cells present in adult marrow, resembles the normal developmental process.  相似文献   

15.
The potential of novel scaffold containing sodium hyaluronate, type I collagen, and fibrin was investigated in the regeneration of osteochondral defects in miniature pigs. Both autologous chondrocyte-seeded scaffolds and non-seeded scaffolds were implanted into two defects located in the non-weight-bearing zone of the femoral trochlea (defect A was located more distally and medially, defect B was located more proximally and laterally). Control defects were left untreated. Twelve weeks after the operation, the knees were evaluated in vivo using MRI. Six months after the implantation, the defects were analyzed using MRI, histological, and immunohistochemical analysis. In the A defects of chondrocyte-seeded scaffold group, hyaline cartilage and fibrocartilage was formed, containing type II collagen, acidic and neutral glycosaminoglycans while the non-seeded scaffold group was predominantly filled with fibrocartilage. Defects in the control group were predominantly filled with fibrous tissue. Histomorphometric analysis of photomicrographs revealed a significantly higher amount of hyaline cartilage in the cell-seeded scaffold group in A defects than in other groups. Both scaffold groups in A defects showed significantly less fibrous tissue than cell-seeded defects B and the control group. Both histological and MRI analysis proved that the novel composite scaffold has a potential to regenerate osteochondral defects within six months.  相似文献   

16.
Cartilage defects that penetrate the subchondral bone can undergo spontaneous repair through the formation of a fibrous or cartilaginous tissue mediated primarily by mesenchymal stem cells from the bone marrow. This tissue is biomechanically inferior to normal articular cartilage, and is often observed to degrade over time. Whether or not biomechanical factors control the type and quality of the repair tissue, and its subsequent degradation, have yet to be elucidated. In this paper, we hypothesise a relationship between the mechanical environment of mesenchymal stem cells and their subsequent dispersal, proliferation, differentiation and death. The mechano-regulation stimulus is hypothesised to be a function of strain and fluid flow; these quantities are calculated using biphasic poroelastic finite element analysis. A finite element model of an osteochondral defect in the knee was created, and used to simulate the spontaneous repair process. The model predicts bone formation through both endochondral and direct intramembranous ossification in the base of the defect, cartilage formation in the centre of the defect and fibrous tissue formation superficially. Greater amounts of fibrous tissue formation are predicted as the size of the defect is increased. Large strains are predicted within the fibrous tissue at the articular surface, resulting in significant cell apoptosis. This result leads to the conclusion that repair tissue degradation is initiated in the fibrous tissue that forms at the articular surface. The success of the mechano-regulation model in predicting many of the cellular events that occur during osteochondral defect healing suggest that in the future it could be used as a tool for optimising scaffolds for tissue engineering.  相似文献   

17.
Differentiation of skeletal tissues, such as bone, ligament and cartilage, is regulated by complex interaction between genetic and epigenetic factors. In the present study, we attempted to elucidate the possible role of cell-extracellular matrix (ECM) adhesion on the inhibitory regulation in chondrogenesis responding to the tension force. The midpalatal suture cartilages in rats were expanded by orthopedic force. In situ hybridization for type I and II collagens, immunohistochemical analysis for fibronectin, alpha5 and beta1 integrins, paxillin, and vinculin, and cytochemical staining for actin were used to demonstrate the phenotypic change of chondrocytes. Immunohistochemical analysis for phosphorylation and nuclear translocation of extracellular signal-regulated kinase (ERK)-1/2 was performed. The role of the cell-ECM adhesion in the response of the chondroprogenitor cells to mechanical stress and the regulation of gene expression of focal adhesion kinase (FAK) and integrins were analyzed by using an in vitro system. A fibrous suture tissue replaced the midpalatal suture cartilage by the expansive force application for 14 days. The active osteoblasts that line the surface of bone matrix in the newly formed suture tissue strongly expressed the type I collagen gene, whereas they did not express the type II collagen gene. Although the numbers of precartilaginous cells expressing alpha5 and beta1 integrin increased, the immunoreactivity of alpha5 integrin in each cell was maintained at the same level throughout the experimental period. During the early response of midpalatal suture cartilage cells to expansive stimulation, formation of stress fibers, reorganization of focal adhesion contacts immunoreactive to a vinculin-specific antibody, and phosphorylation and nuclear translocation of ERK-1/2 were observed. In vitro experiments were in agreement with the results from the in vivo study, i.e. the inhibited expression of type II collagen and upregulation in integrin expression. The arginine-glycine-aspartic acid-containing peptide completely rescued chondrogenesis from tension-mediated inhibition. Thus, we conclude that stretching activates gene expression of beta1 integrin and FAK and inhibits chondrogenesis through cell-ECM interactions of chondroprogenitor cells.  相似文献   

18.
Summary Normal transverse growth of long bones is by periosteal appositional bone formation, balanced by endosteal resorption. Changes in the distribution of cells that are expressing collagen mRNAs during growth were determined using digoxigeninlabelled riboprobes. In neonatal rabbit tibiae osteoblasts expressing type I collagen mRNA are found on periosteal, and at early stages on endosteal, bone surfaces and lining peripheral cavities. Occasional osteocytes express type I collagen mRNA very weakly. The pattern is disrupted when transforming growth factor-2 (TGF-2) is injected daily into the periosteum of neonatal animals; there is increased bone, and later cartilage, formation. Three injections of 20 ng TGF-2 onto the tibia of 3-day-old rabbits led to an increase of periosteal osteoblasts that express the mRNA for type I collagen. Some endosteal osteoblasts and osteocytes in newly-formed peripheral woven bone also express the mRNA. After five injections chondrocytes expressing type II collagen mRNA are found around the injection site. Similar injections of TGF-2 in old rabbits induce only fibrous tissue within which some cells express type I collagen mRNA. This precise localization of mRNAs shows that the expression of type I or II collagen mRNA is here restricted to osteoblasts and chondrocytes, respectively.  相似文献   

19.
In this sheep study, we have tested the hypothesis that an osteogenic response is triggered in the subchondral bone by periosteum implanted in full thickness cartilage defects and can be prevented by replacing the periosteum by a cell-free collagen type I/III membrane. Two 7-mm diameter osteochondral defects were made in the trochlea groove and in the medial femoral condyle of one of the knees in each of 15 adult sheep. The animals were divided into three groups (n=5): a control group with untreated cartilage defects, a group treated with autologous chondrocyte transplantation (ACT) and periosteum, and a group treated with ACT in combination with a collagen I/III membrane cover. Histological examination was performed 1 year later. The optical density of the subchondral bone in the histological sections was measured with digital imaging software. There was a dramatic, statistically significant (P<0.0001; power=1) increase in bone density of 45%–70% under defects that were treated with the periosteal cover, compared with the collagen membrane and control groups, which displayed the same bone density. There was no difference in the cartilaginous reparative tissue in the defects in the three groups. Periosteum thus stimulates the remodelling process in subchondral bone. Stiffening of the subchondral bone can lead to degeneration of the overlying reparative cartilaginous tissue because of an increase in the mechanical stress in the tissue. These findings warrant evaluation of subchondral bone changes in patients treated by ACT and the correlation of these changes with clinical outcome.  相似文献   

20.
The expression of mRNAs for type I and type II procollagens, transforming growth factor-beta (TGF-beta) and c-fos was studied in developing human long bones by Northern blotting and in situ hybridization. The cells producing bone and cartilage matrix were identified by hybridizations using cDNA probes for types I and II collagen, respectively. Northern blotting revealed that the highest levels of TGF-beta mRNA were associated with the growth plates. By in situ hybridization, this mRNA was localized predominantly in the osteoblasts and osteoclasts of the developing bone, in periosteal fibroblasts and in individual bone marrow cells. These findings are consistent with the view that TGF-beta may have a role in stimulation of type I collagen production and bone formation. Only a low level of TGF-beta mRNA was detected in cartilage where type II collagen mRNA is abundant. In Northern hybridization, the highest levels of c-fos mRNA were detected in epiphyseal cartilage. In situ hybridization revealed two cell types with high levels of c-fos expression: the chondrocytes bordering the joint space and the osteoclasts of developing bone. These differential expression patterns suggest specific roles for TGF-beta and c-fos in osseochondral development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号