首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 驱动蛋白3的颈部螺旋与其后的蛋白质序列相互关联,形成一个延长的颈部,其中包含一个特征铰链结构。该特征性铰链在不同的驱动蛋白中表现出多样性,在驱动蛋白KIF13B中,这个铰链仅由一个脯氨酸残基组成,而在驱动蛋白KIF1A中,则由一个长的柔性无规卷曲构成。然而,这个颈部铰链在控制驱动蛋白持续运动方面的功能仍不明确。方法 本文对KIF13B和KIF1A的颈部铰链区的氨基酸残基进行突变改造,并通过单分子运动实验研究铰链区突变对驱动蛋白运动行为的影响。结果 在KIF13B中,在铰链区——脯氨酸前后插入柔性残基对其运动的速度以及持续性都有不同程度的影响,而去除该脯氨酸则可以同时提高运动速度和持续性。在KIF1A中,删除整个柔性颈部铰链仅仅增强了其运动的持续性。同时,把驱动蛋白1的颈部铰链区用改造后的驱动蛋白3的颈部铰链区进行替换,同样能够提高驱动蛋白1的持续运动能力。结论 驱动蛋白3颈部铰链控制其持续运动能力,适当改造可以调整马达的运动行为,这为重塑驱动蛋白马达的持续运动提供了一种新策略。  相似文献   

2.
驱动蛋白是一类能够利用ATP水解释放的化学能驱动其所携带的“货物”分子沿着微管(microtubule,MT)定向运动的分子马达,在细胞器运输、有丝分裂、轴突运输等方面有着重要的生理作用。随着驱动蛋白结合ADP、ATP和未结合核苷酸(APO)三种特征状态的晶体结构的解析,驱动蛋白构象变化的研究得到了进一步发展,而在力产生机制和运动模型方面仍然存在较大争议。本文以kinesin-1家族为例,分析了驱动蛋白三种特征状态结构的特点、状态结构间的构象转变,论述了驱动蛋白的力产生机制和整个迈步过程。并探讨了驱动蛋白的运动模型,同时采用分子动力学模拟比较了驱动蛋白的两种迈步方式,为深入研究驱动蛋白提供了一定的理论计算。最后,基于本课题组对复杂体系的研究,对驱动蛋白体系的控制机制提出了新的假设,并对未来的研究方向进行了展望。  相似文献   

3.
用电偶极子的转动来描述驱动蛋白的构象变化。把微管的构象简化为若干电偶极子的线性排列。驱动蛋白和微管之间的相互作用可看作偶极子-偶极子的耦合作用。计算结果表明:这种耦合作用能够产生沿微管的定向粒子流,并且粒子平均位移反映了驱动蛋白实验结果的主要特征。  相似文献   

4.
驱动蛋白     
驱动蛋白(Kinesin)来源于希腊语Kinein,意思是运动。它是细胞胞浆中的一种动力蛋白。 1981年美国的Allen发现离体的细胞器或小玻璃珠当表面吸附了枪乌贼的神经轴浆后,可以被主动转运。这个现象引起了  相似文献   

5.
带电多囊体蛋白5(charged multivesicular body protein 5,CHMP5)是一种高度保守的蛋白,其在酵母中的同源物是液泡蛋白分选相关蛋白60(vacuolar protein sorting-associated protein 60,Vps60).作为内体分选转运复合体(endosom...  相似文献   

6.
核糖体失活蛋白在细胞内的转运途径   总被引:1,自引:0,他引:1  
核糖体失活蛋白(ribosome—inactivating proteins,RIPs)是一类抑制蛋白质生物合成的毒蛋白,现已成为研究细胞生物学的重要工具并在临床抗肿瘤和抗病毒治疗上得到了广泛应用。现结合国内外近几年的研究进展就核糖体失活蛋白在细胞内的转运途径作一综述。  相似文献   

7.
8.
为探讨人源驱动蛋白MKLP1在有丝分裂和胞质分裂中的作用,以E.coliRNaseⅢ制备MKLP1的3′UTResiRNA转染HeLa细胞,通过定量RTPCR、Western印迹检测MKLP1esiRNA对MKLP1基因的沉默效率.再利用FACS分析、免疫荧光染色和活细胞成像分析检测MKLP1表达缺失后在有丝分裂和胞质分裂不同时期的细胞形态学、细胞分裂指数、细胞百分数,动态观察有丝分裂和胞质分裂期间的表型改变,以系统分析MKLP1的功能.最后通过挽救实验验证MKLP1esiRNA的作用特异性.实验显示MKLP1esiRNA转染HeLa细胞能够有效地特异性消除MKLP1的表达,并被异位表达的MKLP1所挽救.MKLP1蛋白在有丝分裂后期和末期前期位于纺锤体中间带,在末期后期和胞质分裂的最后阶段集中于中间体的中心处.MKLP1表达缺失使中间体正确形成和胞质分裂的完成受到严重抑制,造成大量双多核细胞堆积.结果表明,MKLP1在胞质分裂中间体形成和有丝分裂末期前期向后期过渡过程中起关键作用,是纺锤体中间体中间带相关蛋白,为胞质分裂所必需.  相似文献   

9.
微管是细胞骨架的主要成分之一,几乎存在于所有真核生物细胞之中,参与细胞众多生理功能。PP2A是真核生物体内存在最广泛的蛋白磷酸酶之一,可以调控大部分细胞生命活动,其中,包括微管所介导的许多生命活动。该文从以下方面介绍了PP2A在微管功能行使中的重要作用,包括PP2A参与微管蛋白翻译后修饰、调控分子马达和微管相关蛋白的活性、维持细胞周期中微管的动态平衡以及PP2A异常与微管类疾病的相关性。  相似文献   

10.
介绍了细胞内分子马达的能量转化途径,几种纳米分子马达如驱动蛋白、动力蛋白、肌球蛋白和旋转马达的结构和功能,并展望了分子马达对人类的贡献。  相似文献   

11.
Kinesin and related motor proteins utilize ATP fuel to propel themselves along the external surface of microtubules in a processive and directional fashion. We show that the observed step-like motion is possible through time-varying charge distributions furnished by the ATP hydrolysis cycle while the static charge configuration on the microtubule provides the guide for motion. Thus, while the chemical hydrolysis energy induces appropriate local conformational changes, the motor translational energy is fundamentally electrostatic. Numerical simulations of the mechanical equations of motion show that processivity and directionality are direct consequences of the ATP-dependent electrostatic interaction between the different charge distributions of kinesin and the microtubule.  相似文献   

12.
13.
Kinesin-1 is a motor protein that moves stepwise along microtubules by employing dimerized kinesin heavy chain (Khc) subunits that alternate cycles of microtubule binding, conformational change, and ATP hydrolysis. Mutations in the Drosophila Khc gene are known to cause distal paralysis and lethality preceded by the occurrence of dystrophic axon terminals, reduced axonal transport, organelle-filled axonal swellings, and impaired action potential propagation. Mutations in the equivalent human gene, Kif5A, result in similar problems that cause hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth type 2 (CMT2) distal neuropathies. By comparing the phenotypes and the complementation behaviors of a large set of Khc missense alleles, including one that is identical to a human Kif5A HSP allele, we identified three routes to suppression of Khc phenotypes: nutrient restriction, genetic background manipulation, and a remarkable intramolecular complementation between mutations known or likely to cause reciprocal changes in the rate of microtubule-stimulated ADP release by kinesin-1. Our results reveal the value of large-scale complementation analysis for gaining insight into protein structure-function relationships in vivo and point to possible paths for suppressing symptoms of HSP and related distal neuropathies.  相似文献   

14.
Processive motor proteins are stochastic steppers that perform actual mechanical steps for only a minor fraction of the time they are bound to the filament track. Motors usually work in teams and therefore the question arises whether the stochasticity of stepping can cause mutual interference when motors are mechanically coupled. We used biocompatible surfaces to immobilize processive kinesin-1 motors at controlled surface densities in a mechanically well-defined way. This helped us to study quantitatively how mechanical coupling between motors affects the efficiency of collective microtubule transport. We found that kinesin-1 constructs that lack most of the non-motor sequence slow each other down when collectively transporting a microtubule, depending on the number of interacting motors. This negative interference observed for a motor ensemble can be explained quantitatively by a mathematical model using the known physical properties of individual molecules of kinesin-1. The non-motor extension of kinesin-1 reduces this mutual interference, indicating that loose mechanical coupling between motors is required for efficient transport by ensembles of processive motors.  相似文献   

15.
    
The motor domain regions of three novel members of the kinesin superfamily TLKIF1, TLKIFC, and TLBIMC were identified in a thermophilic fungus Thermomyces lanuginosus. Based on sequence similarity, they were classified as members of the known kinesin families Unc104/KIF1, KAR3, and BIMC. TLKIF1 was subsequently expressed in Escherichia coli. The expression level was high, and the protein was mostly soluble, easy to purify, and enzymatically active. TLKIF1 is a monomeric kinesin motor, which in a gliding motility assay displays a robust plus-directed microtubule movement up to 2 microm/s. The discovery of TLKIF1 also demonstrates that a family of kinesin motors not previously found in fungi may in fact be used in this group of organisms.  相似文献   

16.
    
Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus‐end directed kinesins and minus‐end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT‐based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug‐of‐war between MT motors dragging cargo organelles in opposite directions. However, evidence in support of each mechanisms of regulation is based mostly on the results of theoretical analyses or indirect experimental data. Here, we test whether the direction of movement of membrane organelles in vivo can be controlled by the tug‐of‐war between opposing MT motors alone, by attaching a large number of kinesin‐1 motors to organelles transported by dynein to minus‐ends of MTs. We find that recruitment of kinesin significantly reduces the length and velocity of minus‐end‐directed dynein‐dependent MT runs, leading to a reversal of the overall direction of dynein‐driven organelles in vivo. Therefore, in the absence of external regulators tug‐of‐war between opposing MT motors alone is sufficient to determine the directionality of MT transport in vivo.   相似文献   

17.
Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension.  相似文献   

18.
19.
Processive kinesin motors often contain a coiled-coil neck that controls the directionality and processivity. However, the neck coil (NC) of kinesin-3 is too short to form a stable coiled-coil dimer. Here, we found that the coiled-coil (CC1)-forkhead-associated (FHA) tandem (that is connected to NC by Pro-390) of kinesin-3 KIF13A assembles as an extended dimer. With the removal of Pro-390, the NC-CC1 tandem of KIF13A unexpectedly forms a continuous coiled-coil dimer that can be well aligned into the CC1-FHA dimer. The reverse introduction of Pro-390 breaks the NC-CC1 coiled-coil dimer but provides the intrinsic flexibility to couple NC with the CC1-FHA tandem. Mutations of either NC, CC1, or the FHA domain all significantly impaired the motor activity. Thus, the three elements within the NC-CC1-FHA tandem of KIF13A are structurally interrelated to form a stable dimer for activating the motor. This work also provides the first direct structural evidence to support the formation of a coiled-coil neck by the short characteristic neck domain of kinesin-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号