首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of Ce(3+) to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by Ce(3+) was a static quenching process, the binding constant is 6.70 × 10(5) , and the number of binding site is 1. The thermodynamic parameters (ΔH = -29.94 kJ mol(-1) , ΔG = -32.38 kJ mol(-1) , and ΔS = 8.05 J mol(-1) K(-1) ) indicate that electrostatic effect between the protein and the Ce(3+) is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of Ce(3+) changed the conformation of BSA.  相似文献   

2.
The mechanism of binding of vitamin K(3) (VK(3)) with bovine serum albumin (BSA) was investigated by fluorescence, absorption and circular dichroism (CD) techniques under physiological conditions. The analysis of fluorescence data indicated the presence of static quenching mechanism in the binding. Various binding parameters have been evaluated. Thermodynamic parameters, the standard enthalpy change, DeltaH(0) and the standard entropy change, DeltaS(0) were observed to be -164.09 kJ mol(-1) and -465.08 J mol(-1)K, respectively. The quantitative analysis of CD spectra confirmed the change in secondary structure of the protein upon interaction with VK(3). The binding average distance, r between the donor (BSA) and acceptor (VK(3)) was determined based on the F?rster's theory and it was found to be 3.3 nm. The effects of toxic ions and common ions on VK(3)-BSA system were also investigated.  相似文献   

3.
槐定碱与牛血清白蛋白的相互作用研究   总被引:1,自引:0,他引:1  
在模拟动物体生理条件下,用荧光猝灭、荧光偏振和紫外-可见吸收光谱法研究了槐定碱与牛血清白蛋白(BSA)结合作用。荧光猝灭数据显示,槐定碱与BSA发生反应生成了新的复合物,属于静态荧光猝灭。求出了不同温度(19、25、31、37℃)下槐定碱与BSA作用的结合常数分别为1.219×106,1.164×106,1.110×106和1.057×106L/mol,由van’tHoff方程式计算槐定碱与BSA反应的热力学参数:焓变ΔH和熵变ΔS值分别为-5.97kJ/mol和96.11J/(mol.K),表明槐定碱与BSA间的作用力以静电引力为主。以华法林和布洛芬(分别为siteI和siteII探针)为标记药物研究槐定碱在BSA上的结合位点,结果表明,槐定碱结合在BSA疏水空腔的siteI位点。  相似文献   

4.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, the interaction between ${\text{Cu}}\left( {{\text{phen}}} \right)_3^{\,\,2 + } In this work, the interaction between Cu(phen)(2+)(3) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy combined with UV-vis absorption and circular dichroism (CD) spectroscopic techniques under physiological conditions. The fluorescence data proved that the fluorescence quenching of BSA by Cu(phen)(2+)(3) was the result of the Cu(phen)(2+)(3) -BSA complex formation. The binding constants (K (a)) between Cu(phen)(2+)(3) and BSA at four different temperatures were calculated according to the modified Stern-Volmer equation. The enthalpy change (DeltaH) and entropy change (DeltaS) were calculated to be 10.74 kJ mol(-1) and 54.35 J mol(-1) K(-1), respectively, which indicated that electrostatic interactions played a major role in the formation of Cu(phen)(2+)(3) -BSA complex. The distance r between the donor (BSA) and acceptor[Cu(phen)(2+)(3)] was obtained to be 3.55 nm based on F?rster's energy transfer theory. The synchronous fluorescence and CD spectroscopy results showed that the polarity of the residues increased and the lost of the alpha-helix content of BSA (from 59.84 to 53.70%). These indicated that the microenvironment and conformation of BSA were changed in the presence of Cu(phen)(2+)(3).  相似文献   

6.
Binding of isofraxidin to bovine serum albumin   总被引:4,自引:0,他引:4  
Liu J  Tian J  Hu Z  Chen X 《Biopolymers》2004,73(4):443-450
The binding of isofraxidin to bovine serum albumin (BSA) was studied under physiological conditions with BSA concentration of 1.5 x 10(-6) mol x L(-1) and drug concentration in the range of 1.67 x 10(-6) mol x L(-1) to 2.0 x 10(-5) mol x L(-1). Fluorescence quenching spectra in combination with uv absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and CD spectroscopy was used to determine the drug-binding mode, binding constant, and the protein structure changes in the presence of isofraxidin in aqueous solution. The linearity of Scatchard plot indicates that isofraxidin binds to a single class of binding sites on BSA and the values given for the binding constants agree very closely with those obtained by the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS), were calculated to be -17.63 kJ x mol(-1) and 51.38 J x mol(-1) x K(-1) according to the van't Hoff equation, which indicated that hydrophobic interaction played a main role in the binding of isofraxidin to BSA.  相似文献   

7.
Interaction of wogonin with bovine serum albumin   总被引:4,自引:0,他引:4  
The binding of wogonin with bovine serum albumin (BSA) was investigated at different temperatures by fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH7.40. The association constants K were determined by Stern-Volmer equation based on the quenching of the fluorescence of BSA in the presence of wogonin, which were in agreement with the constants calculated by Scatchard plots. The thermodynamic parameters were calculated according to the Van't Hoff equation and the result indicated that DeltaH(0) and DeltaS(0) had a negative value (-12.02 kJ/mol) and a positive value (58.72 J/mol K), respectively. On the basis of the displacement experimental and the thermodynamic results, it is considered that wogonin binds to site I (subdomain IIA) of BSA mainly by hydrophobic interaction. The studied results by FT-IR and CD experiment indicated that the secondary structures of protein have been perturbed by the interaction of wogonin with BSA.  相似文献   

8.
The characteristics of the interaction between reserpine and bovine serum albumin (BSA) were studied by fluorescence, UV-vis absorption and Fourier transform infrared (FT-IR) spectroscopy. Spectroscopic analysis revealed that fluorescence quenching of BSA by reserpine was through a static quenching procedure. The binding constant K(A) of reserpine with BSA at 293, 301 and 309 K was 1.63, 1.78 and 2.35 x 10(5) moL(-1) L respectively, which indicated degree of binding force between reserpine and BSA. There was one binding site between reserpine and BSA. The entropy and enthalpy changes were positive, indicating that interaction of reserpine and BSA was driven mainly by hydrophobic forces. The average binding distance between the donor (BSA) and the acceptor (reserpine) was about 3.84 nm based on the Forster non-radiation energy transfer theory. Results of synchronous fluorescence and FT-IR spectra indicated that the conformation and microenvironment of BSA were changed by the binding of reserpine. The results may provide important insights into the physiological activity of reserpine.  相似文献   

9.
Ju P  Fan H  Liu T  Cui L  Ai S  Wu X 《Biological trace element research》2011,144(1-3):1405-1418
The interaction between cuprous oxide (Cu(2)O) nanocubes and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, Cu(2)O could effectively quench the intrinsic fluorescence of BSA via static quenching. The apparent binding constant (K(A)) was 3.23, 1.91, and 1.20?×?10(4) M(-1) at 298, 304, and 310 K, respectively, and the number of binding sites was 1.05. According to the Van't Hoff equation, the thermodynamic parameters (ΔH° = -63.39 kJ mol(-1), ΔS° = -126.45 J?mol(-1) K(-1)) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-Cu(2)O complex. Besides, the average binding distance (r(0)?= 2.76 nm) and the critical energy transfer distance (R(0) = 2.35 nm) between Cu(2)O and BSA were also evaluated according to F?rster's non-radioactive energy transfer theory. Furthermore, UV-visible and circular dichroism results showed that the addition of Cu(2)O changed the secondary structure of BSA and led to a decrease in α-helix. All results showed that BSA underwent substantial conformational changes induced by Cu(2)O, which can be very helpful in the study of nanomaterials in the application of biomaterials.  相似文献   

10.
The interaction between human serum albumin (HSA) and N(6)-(2-hydroxyethyl)-adenosine (HEA) was investigated using fluorescence spectroscopy in combination with UV absorption spectroscopy for the first time. The results of spectroscopic measurements suggested that the hydrophobic interaction was the predominant intermolecular force stabilizing the complex, which was in good agreement with the results of molecular modelling study. The enthalpy change (DeltaH) and the entropy change (DeltaS) were calculated, according to the Van't Hoff equation, to be -24.05 kJ/mol and 30.23 J/mol/K, respectively. The effects of common ions on the binding constant of the HEA-HSA complex at room temperature were also investigated.  相似文献   

11.
Shu Li  Lin Tang  Hongna Bi 《Luminescence》2016,31(2):442-452
The aim of this study is to evaluate the binding behavior between pelargonidin‐3‐O‐glucoside (P3G) and bovine serum albumin (BSA) using multi‐spectroscopic, transmission electron microscopy (TEM) and molecular docking methods under physiological conditions. Fluorescence spectroscopy and time‐resolved fluorescence showed that the fluorescence of BSA could be quenched remarkably by P3G via a static quenching mechanism, and there is a single class of binding site on BSA. In addition, the thermodynamic functions ΔH and ΔS were –21.69 kJ/mol and 24.46 J/mol/K, indicating that an electrostatic interaction was a main acting force. The distance between BSA and P3G was 2.74 nm according to Förster's theory, illustrating that energy transfer occurred. In addition, the secondary structure of BSA changed with a decrease in the α‐helix content from 66.2% to 64.0% as seen using synchronous fluorescence, UV/vis, circular dichroism and Fourier transform infrared spectroscopies, whereas TEM images showed that P3G led to BSA aggregation and fibrillation. Furthermore, site marker competitive experiments and molecular docking indicated that P3G could bind with subdomain IIA of BSA. The calculated results of the equilibrium fraction showed that the concentration of free P3G in plasma was high enough to be stored and transported from the circulatory system to its target sites to provide therapeutic effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

13.
Empagliflozin (EMP) is an oral antihyperglycemic agent for type 2 diabetic patients. The molecular binding of EMP to bovine serum albumin (BSA) was elucidated by a combined experimental/computational approach to fulfil the pharmacokinetics and pharmacodynamics gaps of the cited drug for further development. Fluorescence, synchronous, and three-dimensional fluorescence spectroscopy verified that EMP quenched BSA native fluorescence through a dual static/dynamic mechanism that was further supported by Fӧrster resonance energy transfer and ultraviolet absorption spectroscopy. Fourier transform infrared spectroscopy revealed the conformational variations in BSA secondary structure induced by EMP. Thermodynamic properties of the BSA–EMP complex were also investigated, and the hydrophobic interactions' role in the binding process was demonstrated by the computed enthalpy (ΔH = 6.558 kJ mol−1) and entropy (ΔS = 69.333 J mol−1 K−1). Gibbs free energy (ΔG) values were negative at three distinct temperatures, illuminating the spontaneity of this interaction. In addition, molecular docking studies depicted the optimal fitting of EMP to BSA on Site I (sub-domain IIA) through three hydrogen bonds. Additionally, and based on the quenching effect of EMP on BSA fluorescence, this study suggests a simple validated spectrofluorometric method for the quantitation of the studied drug in bulk form and human plasma samples with reasonable recoveries (96.99–103.10%).  相似文献   

14.
The remarkable binding properties of serum albumin have been investigated extensively, but little is known about an important class of fatty acids, the very long-chain saturated fatty acids (VLCFA; >18 carbons). Although VLCFA are metabolized efficiently in normal individuals, they are markers for and possibly causative agents of several peroxisomal disorders. We studied the binding of [(13)C]carboxyl-enriched arachidic (C20:0), behenic (C22:0), lignoceric (C24:0), and hexacosanoic (C26:0) acids to bovine serum albumin (BSA) by (13)C-NMR spectroscopy. For each VLCFA, the NMR spectra showed multiple signals at chemical shifts previously identified for long-chain fatty acids (12-18 carbons), suggesting stabilization of binding by similar, if not identical, interactions of the fatty acid carboxyl anion with basic amino acid residues. The maximal binding (mol of VLCFA/mol of BSA) and the number of observed binding sites decreased with increasing chain length, from 4-5 for C20:0, 3-4 for C22:0, and 2 for C24:0; we validated our previous conclusion that BSA has only one site for C26:0 (Ho, J. K., H. Moser, Y. Kishimoto, and J. A. Hamilton. 1995. J. Clin. Invest. 96: 1455-1463). Analysis of chemical shifts suggested that the highest affinity sites for VLCFA are low affinity sites for long-chain fatty acids. In competition experiments with (13)C-labeled C22:0 (3 mol/mol of BSA) and unlabeled oleic acid, C22:0 bound to BSA in the presence of up to 4 mol of oleic acid/mol of BSA, but 1 mol was shifted into a different site. Our studies suggest that albumin has adequate binding capacity for the low plasma levels of VLCFA with 20 to 26 carbons, but the protein may not be able to bind longer chain VLCFA.  相似文献   

15.
In this work, the interaction of chlortetracycline with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking. Results indicated that chlortetracycline quenches BSA fluorescence mainly by a static quenching mechanism. The quenching constants (KSV) were obtained as 5.64 × 104, 4.49 × 104/, and 3.44 × 104/ M?1 at 283, 295, and 307 K, respectively. The thermodynamic parameters of enthalpy change Δ H°, entropy change Δ S°, and free energy change Δ G° were ?5.12 × 104/ J mol?1, ?97.6 J mol?1 K?1, and ?2.24 × 104/ J mol?1 (295 K), respectively. The association constant (KA) and the number of binding sites (n) were 9.41 × 103/ M?1 and 0.86, respectively. The analysis results suggested that the interaction was spontaneous, and van der Waals force and hydrogen‐bonding interactions played key roles in the reaction process. In addition, CD spectra proved secondary structure alteration of BSA in the presence of chlortetracycline. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:331–336, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21424  相似文献   

16.
The thermodynamic and activation energies of the slow inhibition of almond beta-glucosidase with a series of azasugars were determined. The inhibitors studied were isofagomine ((3R,4R,5R)-3,4-dihydroxy-5-hydroxymethylpiperidine, 1), isogalactofagomine ((3R,4S,5R)-3,4-dihydroxy-5-hydroxymethylpiperidine, 2), (-)-1-azafagomine ((3R,4R,5R)-4,5-dihydroxy-3-hydroxymethylhexahydropyridazine, 3), 3-amino-3-deoxy-1-azafagomine (4) and 1-deoxynojirimycin (5). It was found that the binding of 1 to the enzyme has an activation enthalpy of 56.1 kJ/mol and an activation entropy of 25.8 J/molK. The dissociation of the enzyme-1 complex had an activation enthalpy of -2.5 kJ/mol and an activation entropy of -297 J/molK. It is suggested that the activation enthalpy of association is due to the breaking of bonds to water, while the large negative activation entropy of dissociation is due at least in part to the resolvation of the enzyme with water molecules. For the association of 1 DeltaH(0) is 58.6 kJ/mol and DeltaS(0) is 323.8 J/molK. Inhibitor 3 has an activation enthalpy of 39.3 kJ/mol and an activation entropy of -17.9 J/molK for binding to the enzyme, and an activation enthalpy of 40.8 kJ/mol and an activation entropy of -141.0 J/molK for dissociation of the enzyme-inhibitor complex. For the association of 3 DeltaH(0) is -1.5 kJ/mol and DeltaS(0) is 123.1 J/molK. Inhibitor 5 is not a slow inhibitor, but its DeltaH(0) and DeltaS(0) of association are -30 kJ/mol and -13.1 J/molK. The large difference in DeltaS(0) of association of the different inhibitors suggests that the anomeric nitrogen atom of inhibitors 1-4 is involved in an interaction that results in a large entropy increase.  相似文献   

17.
The intermolecular interaction between cyanidin‐3‐glucoside (Cy‐3‐G) and bovine serum albumin (BSA) was investigated using fluorescence, circular dichroism and molecular docking methods. The experimental results revealed that the fluorescence quenching of BSA at 338 nm by Cy‐3‐G resulted from the formation of Cy‐3‐G–BSA complex. The number of binding sites (n) for Cy‐3‐G binding on BSA was approximately equal to 1. The experimental and molecular docking results revealed that after binding Cy‐3‐G to BSA, Cy‐3‐G is closer to the Tyr residue than the Trp residue, the secondary structure of BSA almost not change, the binding process of Cy‐3‐G with BSA is spontaneous, and Cy‐3‐G can be inserted into the hydrophobic cavity of BSA (site II′) in the binding process of Cy‐3‐G with BSA. Moreover, based on the sign and magnitude of the enthalpy and entropy changes (ΔH0 = – 29.64 kcal/mol and ΔS0 = – 69.51 cal/mol K) and the molecular docking results, it can be suggested that the main interaction forces of Cy‐3‐G with BSA are Van der Waals and hydrogen bonding interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The mechanism of interaction between bovine serum albumin (BSA) and 2-naphthylamine (2-NA) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra, and UV-vis spectroscopy. It was proved from fluorescence spectra that the fluorescence quenching of BSA by 2-NA was a result of the formation of complex between 2-NA and BSA, and the binding constants (K(a) ) as well as the numbers of binding sites for 2-NA in BSA were determined according to the modified Stern-Volmer equation. The results of synchronous fluorescence and CD spectra demonstrated 2-NA could decrease the amount of α-helix of BSA, leading to the loosening of protein skeleton. UV-vis spectroscopy and resonance light scattering spectra (RLS) results also suggested the conformation of BSA were changed and the BSA aggregation occured, which could induce toxic effects on the organism.  相似文献   

19.
Both fluorescence spectroscopic and molecular docking methods were used to investigate the interaction between bovine serum albumin (BSA) and a known Bcl-xl/Bcl-2 inhibitor HA 14-1. Based on the spectral overlap between the emission of BSA and absorption of HA 14-1, Forster energy transfer was proposed to be the possible quenching mechanism. The Stern-Volmer constants are 2.49 x 104, 2.04x 104 and 0.90 x 104 M-1 at 293, 303 and 318 K, respectively, indicating that a static quenching process dominates. Thermodynamic parameters were further obtained. The derived negative Δ H (-27.51 kJ mol-1) and Δ S (-11.11 J mol-1K-1) values suggest hydrogen bond interaction and van der Waals force are the main binding force. The docking study was performed on BSA model. According to the docking score and the number of hydrogen bonds, the potential binding site for HA 14-1 is proposed to be the site IIA, also known as drug site 1.  相似文献   

20.
The features of brucine (BC) binding to two blood proteins, bovine hemoglobin (BHb), and bovine serum albumin (BSA), were investigated via fluorescence, circular dichroism and UV/Vis absorption spectroscopy. The results revealed that BC caused the fluorescence quenching of blood proteins by the formation of BC–protein complex. The corresponding thermodynamic parameters were measured at different temperatures. The process of binding BC molecule on protein was a spontaneous molecular interaction procedure in which entropy increased and Gibbs free energy decreased. Hydrophobic and electrostatic interactions play a major role in stabilizing the complex. The molecular docking has been employed to explore the binding site of the BC in BHb and BSA on the Autodock 4.2. The distances r between BC and protein were calculated to be 4.93 and 5.08 nm for BHb, and BSA, respectively. The effect of BC on the conformation of blood proteins was analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号