首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
儿茶酚胺调节免疫功能的细胞和分子机制   总被引:6,自引:0,他引:6  
目前认为儿茶酚胺(cateeholamines,CAs)不只是引起普遍的免疫抑制,而是抑制细胞免疫但促进体液免疫。CAs可抑制1型辅助T(T helper 1,Th1)细胞、细胞毒性T(T cytotoxie,Tc)细胞、自然杀伤(natural kiHer,NK)细胞和单核细胞的作用,并增强Th2和B细胞的作用。CAs通过免疫细胞上的β2-肾上腺素受体(β2-adrenoreceptors,β2-ARs)引起细胞内cAMP增加,cAMP激活蛋白激酶A(protein kinase A,PKA),后者调节核转录因子的活性,从而影响细胞因子的基因表达,即抑制白介素-2(interleukin-2,IL-2)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和IL-12的基因转录;增强IL-6、IL-10和IL-4的基因表达。  相似文献   

4.
5.
Tumor necrosis factor-alpha (TNF), a mononuclear phagocyte (MO)-derived peptide, is increasingly being recognized for its pleomorphic immunologic effects. A number of investigations have demonstrated that lipopolysaccharide (LPS) can induce TNF synthesis, yet mechanisms that regulate TNF expression at the cellular and molecular levels have not been fully elucidated. In this study, we present data demonstrating pentoxifylline, a methylxanthine, is efficacious in suppressing LPS-induced MO-derived TNF at the level of both TNF mRNA accumulation and TNF supernatant bioactivity. Pentoxifylline, at a dose of 1 x 10(-5)M, suppressed the production of both biologically active TNF and TNF mRNA expression by more than 50%. Furthermore, additional methylxanthines and dibutyryl cAMP have similar effects on TNF expression. These data support the mechanism for this suppressive effect is via the generation of intracellular cAMP.  相似文献   

6.
7.
8.
Summary There is strong evidence in favor of a major role for adenosine in the metabolic regulation of blood flow to the heart. The exact nature of the molecular and cellular events leading to the vasodilatation by adenosine are poorly understood. In the present report we have provided experimental evidence that; (i) hypoxia of cardiac cells resulted in the production of adenosine (and its degradative products) which can be responsible for the hypoxic dilation observed by several workers; (ii) the release of metabolites such as potassium and inorganic phosphate was unchanged due to a 30-minute hypoxia of cardiac cells; (iii) the release of prostaglandin E but not F was enhanced due to hypoxia of cardiac cells which may be due to the storage pools in the cells; (iv) prostaglandin E1, E2 and F2 inhibited the uptake of adenosine at pharmacological concentrations but not at physiological concentrations; (v) prostaglandin synthetase inhibitors (aspirin and indomethacin) nonspecifically inhibited the uptake of adenosine in the cardiac cells; (vi) lowering of pH resulted in inhibition in the uptake of adenosine and its incorporation into adenine nucleotides in cardiac cells; (vii) lowering the pH of the perfusion medium resulted in the increased release of perfusate adenosine (and its degradative products) with a simultaneous increase in coronary blood flow; (ix) specific adenosine receptor sites were found in cardiac muscle, coronary arteries, and carotid arteries of the dog and rabbit aorta, which satisfy the basic characteristic of receptor binding; and (x) these receptor binding sites were different from the adenosine uptake protein and were competitively blocked by theophylline or aminophylline. It is concluded that adenosine plays a major role in blood flow regulation to the heart and acts through specific receptors to produce vasodilatation.  相似文献   

9.
10.
11.
12.
The patients with Crohn's disease (CD) have a 'leaky gut' manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-alpha (TNF-alpha) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-alpha is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-alpha increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-alpha-induced increase in MLCK gene activity. By progressive 5' deletion, minimal MLCK promoter was localized between -313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-alpha-induced increase in MLCK promoter activity was mediated by NF-kappaB activation. There were eight kappaB binding sites on MLCK promoter. The NF-kappaB1 site at +48 to +57 mediated TNF-alpha-induced increase in MLCK promoter activity. The NF-kappaB2 site at -325 to -316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-kappaB dimer type binding to the kappaB sites. p50/p65 dimer preferentially binds to the NF-kappaB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-kappaB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-alpha-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-alpha-induced modulation of MLCK gene activity.  相似文献   

13.
Osteosarcoma cells are recognized by abnormal function that causes a primary bone tumor. Osteosarcoma cells U(2)OS and SAOS-2 were analyzed for the expression of cell surface markers. High expression was quantified for hyaloronidase receptor (CD-44) > moderate for integrins (CD-51 and -61), > and lower for selectins (CD-62). High mitotic capacity were demonstrated by gene expression (measured by RT-PCR) and the protein level (measured by FACS) for cFOS, cMYC, and cJUN. The basic definition of osteosarcoma is excessive production of pathological osteoid. Expression of mRNA for matrix genes osteocalcin, osteonectin, and biglycan was studied. Osteocalcin and osteonectin were detected in RNA from primary cultured marrow stromal, trabecular bone cells, and osteosarcoma cell lines (U(2)OS, SAOS-2). mRNA for biglycan was detected only in primary cells and MG-63 cell line and was undetectable in RNA from U(2)OS, SAOS-2 osteosarcoma cell lines and by RNA extracted from bone biopsies of osteosarcoma patients. The absence of biglycan message observed in osteosarcoma samples provides evidence for the alterations in the extra cellular matrix which result with non-mineralized osteoid produced by the osteosarcoma cells.  相似文献   

14.
The development of an amoeba into a plasmodium involves extensive changes in cellular organisation and gene expression. The genetic basis of a number of recessive mutations that block plasmodium development has been elucidated. The stage at which development becomes abnormal has been determined for all the mutants, as has the terminal phenotype. In order to investigate the changes in gene expression that accompany plasmodium development, a cDNA library has been made using RNA isolated from cell populations in which development was occurring.  相似文献   

15.
16.
17.
There has been nearly a century of interest in the idea that information is encoded in the brain as specific spatio-temporal patterns of activity in distributed networks and stored as changes in the efficacy of synaptic connections on neurons that are activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation opened a new chapter in the study of synaptic plasticity in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of the genetic machinery is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.  相似文献   

18.
Cellular and molecular parameters of mesothelioma   总被引:4,自引:0,他引:4  
Malignant mesotheliomas (MM) are neoplasms arising from mesothelial cells that line the body cavities, most commonly the pleural and peritoneal cavities. Although traditionally recognized as associated with occupational asbestos exposures, MMs can appear in individuals with no documented exposures to asbestos fibers, and emerging data suggest that genetic susceptibility and simian virus 40 (SV40) infections also facilitate the development of MMs. Both asbestos exposure and transfection of human mesothelial cells with SV40 large and small antigens (Tag, tag) cause genetic modifications and cell signaling events, most notably the induction of cell survival pathways and activation of receptors, and other proteins that favor the growth and establishment of MMs as well as their resistance to chemotherapy. Recent advances in high-throughput technologies documenting gene and protein expression in patients and animal models of MMs can now be validated in human MM tissue arrays. These have revealed expression profiles that allow more accurate diagnosis and prognosis of MMs. More importantly, serum proteomics has revealed two new candidates (osteopontin and serum mesothelin-related protein or SMRP) potentially useful in screening individuals for MMs. These mechanistic approaches offer new hope for early detection and treatment of these devastating tumors.  相似文献   

19.
20.
Cellular regulation of iron assimilation   总被引:9,自引:0,他引:9  
Cells of plants, most microorganisms, and animals require well-defined amounts of iron for survival, replication, and differentiation. The metal is an important component of such processes as synthesis of DNA, RNA, and chlorophyll; electron transport; oxygen metabolism; and nitrogen fixation. Because of the insolubility of iron in aerobic environments at neutral and alkaline pH values, cells have had to devise specific strategies to assimilate the metal. These include (1) development of systems for reducing ferric ions to the more soluble ferrous ions at the cell surface, (2) employment of small carrier molecules (termed siderophores) that have high affinity for ferric ions and receptor proteins for the ferrated molecules, and (3) use of transferrin and other proteins that can transport ferric ions. Excessive amounts of iron are toxic, however, and intracellular storage capacity is limited and efflux mechanisms generally are lacking. Thus, cells have had to develop methods of preventing over-accumulation of the metal. These include use of (1) oxygen to convert ferrous to ferric ions, (2) small molecules that can bind ferrous ions, termed siderophraxes, and (3) proteins that, when combined with ferrous ions, repress the expression of iron transport genes. Often, one organism can prevent growth of neighbors by restricting their access to iron. In other cases, cells assist each other by sharing iron acquisition systems or by restricting influx of excess iron. Homeostatic control of other essential trace metals also is required for optimal cell function. Nevertheless, since iron thus far has received most attention, it serves as the model of mineral metabolism. Moreover, many of the observations made on control of iron metabolism suggest possible applications in prevention and management of plant and animal infections as well as of neoplastic diseases, arthropathy, and cardiomyopathy. This review will focus on (1) problems at the cellular level of iron acquisition, storage, and exclusion; and (2) the strategies devised by cells of plants, microorganisms, and animals to solve these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号