首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of two contrasting species of herbaceous annuals, thedicot sunflower (Helianthus annuusL.) and the monocot maize(Zea maysL.), grown in the glasshouse were subjected to regularunidirectional stem flexure. Differences in morphology and mechanicalproperties of roots and shoots were then investigated. Rootsystems were divided into quadrants around the axis of stimulationand differences in root morphology and mechanics between thezones were investigated. There were considerable differencesbetween roots in the leeward and windward zones compared withroots perpendicular to the axis of stimulation. First-orderlateral roots in both species were thicker, more rigid and morenumerous. These results suggest that plant roots respond locallyto mechanical stimulation. There were, however, also differencesin the responses of the two species. In sunflower, the tap rootand stem base became elliptical in cross section with the majoraxis lying in the plane of stimulation. The lateral roots offlexed sunflowers in both the leeward and windward zones showedsimilar growth responses: roots were thicker, more numerousand weighed more than those in the perpendicular zones. However,only leeward roots showed significant differences in their mechanicalproperties; roots were more rigid, stronger and stiffer. Incontrast, the leeward roots of maize were thicker and more numerous,with a greater biomass than the windward roots. However, onlyroots in the windward zone were stiffer than those in the perpendicularzone. These differences between sunflower and maize are relatedto their contrasting anchorage mechanics.Copyright 1998 Annalsof Botany Company Anchorage, biomechanics, adaptive growth, roots, thigmomorphogenesis,Helianthus annuusL.,Zea maysL.  相似文献   

2.
Continuous measurements of CO2-evolution and dry matter accumulation were carried out on shoots and roots separately of intact Helianthus annuus L. cv. Autumn Beauty plants grown in nutrient solution at different root temperatures. The data were used to distinguish between growth and maintenance components of respiration. The maintenance and growth coefficients were higher in the root system than in the shoots. The overall efficiency of assimilate utilization was within the range reported in the literature. An increase in root temperature increased the maintenance part of root respiration and, to a lesser degree, also shoot maintenance respiration. Neither root nor shoot growth respiration coefficients were affected by root temperature. It is concluded that the study of whole-plant respiration masks differences in energy utilization between shoots and roots.  相似文献   

3.
BREEZE  V.; ELSTON  J. 《Annals of botany》1983,51(5):611-616
Some of the published evidence used in the synthesis and maintenancemodel of plant respiration is discussed in relation to the effectof temperature. Recalculations from the data of de Vries (1975b) give different results from those claimed by him. The modelis considered in terms of the use of substrate in the dark andits production in the light. It is suggested that starvationestimates of maintenance are not valid. The most reliable methodof observing synthesis respiration in whole plants appears tobe by following a discrete pool of substrate, as is possiblewith labelled carbon. Triticum aestivum L., Zea mays L., Helianthus annuus L., Vicia faba L., carbon dioxide, respiration, temperature, substrate content  相似文献   

4.
Root morphogenesis and cell cycle kinetics of intact and aseptically-grownexcised roots of Helianthus annuus L. were studied. Intact rootsshow predominant cell arrest in G1 with an absence of polyploidcells coincident with secondary vascularization. Exposure ofthe cut ends of aseptically grown excised roots to known concentrationsof indol-3-yl acetic acid, benzyladenine, and myo-inositol for8 weeks initiated the production of secondary vascular tissuesand predominant cell arrest in G2 concommitant with poiyploidization.Excised roots grown in the absence of these substances producedroots with only primary vascularization and predominant cellarrest in G1 coincident with an absence of polyploidization.These results indicate that (a) root cells of H. annuus havethe ability to undergo polyploidization that may be inducedby exogeneously applied chemicals, (b) a general relationshipbetween predominant cell arrest in G1 coincident with the absenceof secondary vascularization does not hold true and (c) althoughsecondary vascularization occurs in cultured roots exposed toall three additives similar to secondary vascularization inintact roots, the two roots should not be considered identicalin all respects. Helianthus annus L., sunflower, root, morphogenesis, cell cycle kinetics, polyploidy, cell differentiation, vascularization  相似文献   

5.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

6.
7.
Despite numerous studies of the effects of mechanical stimulationon plant shoots, the response of roots to mechanical stimulationhas largely been neglected. In this study the effects of shootflexure on the morphology and mechanics of two contrasting speciesof herbaceous angiosperm, growing in a glasshouse were compared:maize (Zea mays), a monocot; and sunflower (Helianthus annuusL.) a dicot. Mechanical stimulation affected the root more than the shootcomponents. Root systems of mechanicallystressed sunflowershad a greater angle of spread and increased root number. Aswell as large morphological and weight effects, with increasesover the control of 33% in the length of rigid root and 38%in the dry weight of lateral roots, in sunflowers, there werealso mechanical effects. In both species roots of flexed plantswere more rigid, stronger and composed of stiffer material andtheir root systems also provided greater anchorage strength.In contrast, there was only a small reduction in shoot weightand shoot height in flexed plants and no effects on mechanicalproperties. There were differences in behaviour between species; maize rootmorphology responded less than that of sunflowers to mechanicalstimulation. The basal diameter of roots increased by only 8%compared with 16% in sunflowers, though the roots of both speciesshowed similar increases in material stiffness. This differenceis related to the lack of secondary thickening in the monocotscompared with the dicot sunflowers. Key words: Thigmomorphogenesis, Helianthus annuus L., Zea mays, anchorage, lodging  相似文献   

8.
Growth-rates of some West African Forest-tree Seedlings in Shade   总被引:1,自引:0,他引:1  
OKALI  D. U. U. 《Annals of botany》1972,36(5):953-959
The growth of seedlings of three West African forest-tree species;Ceiba pentandra (L.) Gaertn., Terminalia ivorensis A. Chev.,and Chlorophora excelsa (Welw.) Benth. was compared with thatof Helianthus annuus in shade to complement an earlier studyof seedlings in full daylight. Growth-analysis techniques wereused to show that there is no great disparity between the woodyplants and Helianthus in adaptation to light since both requirehigh light intensities (above full daylight under the experimentalconditions) for maximum growth. It was concluded from this thatthe woody habit, rather than differential adaptation to light,is mainly responsible for the lower growth-rates of the woodyplants when compared with Helianthus. The high light requirementof the tree seedlings is consistent with their role as pioneersin regeneration of the natural West African forest.  相似文献   

9.
HODGSON  G. L. 《Annals of botany》1967,31(2):291-308
The influences of seasonal changes in light radiation and temperatureon the vegetative growth of Helianthus annuus and Vicia fabahave been investigated in the east of Scotland by pot experiments,carried out in the open at weekly intervals between June andSeptember in 1956 and May and October in 1957. To minimize theeffects of ontogenetic drift pots containing plants of a similarmorphological status were selected from batches sown every fewdays. At the beginning and end of each experiment replicatedand paired pots were harvested and the dry weights of the leaves,stems, and roots together with the leaf areas determined. Fromthese data weekly values for net assimilation rate, leaf-arearatio (ratio of leaf area to plant weight), and relative growthrate were calculated. Simultaneously, records were kept of the diurnal changes inair temperature and of light energy by means of an integratingphotometer. Multiple regressions linking light and temperature with netassimilation rate, leaf-area ratio, and relative growth ratewere calculated separately for each year. A significant ‘time-of-season’trend was largely eliminated by including an additional variable,the initial leaf-area ratio. In the individual regressions thevariance accounted for was very high, ranging from 75 to 97per cent. The results demonstrated that for both species the net assimilationrate and relative growth rate were positively dependent on lightand temperature. The leaf-area ratio of both species was negativelyaffected by light, but only for V. faba was there a positiverelationship between the leaf-area ratio and temperature. H.annuus grew faster than V. faba during the major part of theseason, largely because of its higher leaf-area ratio. The results are compared with prior investigations in Englandand elsewhere.  相似文献   

10.
EZE  J. M. O. 《Annals of botany》1973,37(2):315-329
Sand-culture experiments were carried out in full daylight atsuccessive weekly intervals between March and December 1969,to investigate the effects of seasonal changes in climatic factorson the growth of Helianthus annuus and Phaseolus vulgaris inFreetown. Values for a number of growth parameters were calculatedfrom the dry weights of the leaves, stems, and roots, and fromthe leaf areas. Simultaneously the diurnal changes in climaticfactors were recorded. Multiple regressions linking light, temperature, and relativehumidity with some of the growth parameters were calculated.The total variance accounted for in the regressions of relativegrowth-rate, net assimilation rate, and leaf weight ratio onlight, temperature, and relative humidity ranged from 51 to60 per cent in P. vulgaris. In H. annuus relative humidity wasless important; the percentage proportion of total varianceaccounted for in the regression of leaf weight ratio (and leafarea ratio in both species) on light and temperature was notsignificant. The results showed that H. annuus grew faster than P. vulgaris,but the latter's growth was depressed less by the dull weatherof the rainy season. The relative growth-rates of both specieswere positively dependent on light and temperature while theirnet assimilation rates were negatively dependent on relativehumidity, and their leaf area ratios negatively dependent onlight. All parameters used except leaf area ratio and leaf areato leaf weight ratio showed seasonal variations correspondingto dry and rainy seasons. The initial and final values of leafarea ratio and weight ratios were always different but did notvary in the same direction in both species. The results are discussed in relation to similar work done elsewhere.  相似文献   

11.
A method is proposed for estimating expected values of meanrelative growth and net assimilation rates, and their variances,over an interval of time, from replicated plant weight and leafarea data at each end of the time interval. The advantage ofthe method is that it avoids the necessity of pairing replicateplants at each of the two harvests, and gives exact resultsfor relative growth rate. The results for net assimilation rateare approximate, but the method proposed still avoids the pairingprocess which is regarded as an artificial necessity inherentin the conventional method. net assimilation rate, relative growth rate, mathematical analysis, Helianthus annuusL, sunflower, Triticum aestiuumL, wheat  相似文献   

12.
Root growth respiration and root maintenance respiration rate of the following species were determined: Hypochaeris radicata L. ssp. radicata L., H. radicata ssp. ericetorum Van Soest, Plantago lanceolata L., P. major L. ssp. major, P. major ssp. pleiosperma Pilgcr, P. maritime L., Senecio viscosus L., S. vulgaris L. and Urtica dioica L. A high root growth respiration (i.e. the amount of oxygen consumed for synthesis of a given weight of root material) implied a high maintenance respiration rate (i.e. the amount of oxygen consumed per unit of time and dry weight, but not connected with growth). High values of both components reflect a low efficiency of root respiratory processes. The efficiency of root respiration, as determined by the values for root growth respiration and root maintenance respiration rate could not be demonstrated to be of advantage in adaptation to soil conditions, as e.g. nitrogen content, moisture content and pH. It is concluded that (he degree of ‘wasteful utilization of sugars’ in roots, i.e. such consumption of sugars as cannot be related to structural growth, storage of carbohydrates or maintenance processes, depends on imbalance of transport of sugars from the shoot to the roots with utilization of sugars for synthesis of root material. The results are discussed in relation to Brouwer's explanation for the equilibrium between the growth of shoots and of roots. Root growth rate in the present species appears limited by a factor produced in the shoot under light conditions, and which factor is distinct from carbohydrates. The evidence presented shows that relatively inefficient root respiration does not imply a low growth rate. In regulation of plant growth the growth rate itself and also the shoot to-root ratio may be more important than the regulation of the efficiency of energy metabolism.  相似文献   

13.
Peacock  K.; Berg  A. R. 《Annals of botany》1994,74(6):661-666
Etiolated seedlings of Sunflower (Helianthus annuus L.) weresubjected to mechanical stress by longitudinally compressingthe hypocotyl with approx. 0·05 N force (equivalent to0·025 MPa for a 1·6 mm diameter hypocotyl). Thisrelatively low compressive stress effected an increase in relativegrowth rates (RGR) of the hypocotyl for a period of 1-2 h, followingwhich RGR returned to the pretreatment rate. RGR was also increasedby an equivalent compressive stress treatment (0·025MPa) for 4 h in water or in 10-10 mol l-1 IAA. These resultsare discussed in the context of a possible role for mechanicallyinduced stress in the initiation and maintenance of nutationalgrowth movements.Copyright 1994, 1999 Academic Press Helianthus annuus, Sunflower, hypocotyl growth, mechanical stress, seedling growth, nutational growth movements, circumnutation  相似文献   

14.
The effects of inorganic nutrients on the levels of endogenouscytokinins in plants of sunflower (Helianthus annuusL.) grownin sand culture were studied. Low levels of nitrogen resultedin rapid decreases in the levels of cytokinins extracted fromleaves, buds, roots, and root exudates. Similar effects wereobserved with phosphorus deficiency, but the effects of potassiumdeficiency on the cytokinin content of leaves was less marked.The cytokinin content was higher in plants supplied with nitrogenas nitrate than in those supplied with ammonium sulphate orammonium nitrate. The decline in cytokinin levels in derooted shoots and detachedleaves could be reversed by supplying them with nutrient solution.Although leaves on intact plants may normally be dependent uponthe supply of cytokinins from the roots, isolated leaves havethe capacity for cytokinin production when supplied with inorganicnutrients.  相似文献   

15.
The method of compartmental analysis was applied to study sodiumfluxes in roots of intact seedlings of Helianthus annuus L.By measuring sodium uptake and transport to the shoots of theseedlings in parallel experiments, transport of tracer sodiumto shoots and net accumulation of Na+ in the roots during theflux measurements was accounted for. The steady-state sodiumfluxes in the intact sunflower roots were similar in size tothose in excised roots but in general they were somewhat higher.This indicates more metabolic activity in the intact tissues.Using whole plants it is possible to study the response of ionfluxes in roots to ecophysiological stimuli received by theshoots, and in the present experiments the effect of continuouslight versus long-day growth conditions was investigated. Potassium,when continually present, depressed all fluxes and the cytoplasmiccontent of sodium but tended to increase the vacuolar sodiumcontent, in particular when this was related to the cytoplasmiccontent. When added to sodium-loaded roots, potassium stimulatedthe plasmalemma sodium efflux but slightly, suggesting a lowefficiency of K+-Na+ exchange across the plasmalemma in intactas well as excised sunflower roots. Subsequently, however, potassiuminduced a transient decrease in the 22Na efflux that was followedby oscillations in tracer efflux. These changes were attributedto potassium-induced transfer of sodium to vacuoles. Moreover,the oscillations seem to indicate the operation of negativefeedback control of sodium fluxes.  相似文献   

16.
Mycorrhizal fungi, which can produce a large portion of total soil respiration, respond strongly to global changes such as elevated CO2, N-deposition, and land-use change. Predictions of future ecosystem C sequestration hinge on respiration budgets, but the mycorrhizal influence on total soil respiration remains unknown. In this study, sunflowers (Helianthus annuus) were subjected to various mycorrhizal treatments, and their root and soil systems were enclosed in chambers that continuously monitored belowground (root + mycorrhizal + heterotrophic) CO2 production during plant growth, death, and decomposition. Rhizocosms with high mycorrhizal colonization exhibited higher soil respiration rates as plants matured, an increase that was in proportion to the mycorrhizal stimulation of plant growth. Living mycorrhizal plants behaved like nonmycorrhizal ones in that total rhizocosm respiration had the same relationship to plant mass and the same temperature sensitivity as nonmycorrhizal plants. Upon removal of the shoots though, mycorrhizal plants exhibited the largest relative reduction in respiration resulting in a unique relationship of soil respiration with plant mass. The mycorrhizal influence on heterotrophic respiration merits as much attention from experimenters and modelers as the mycorrhizal contribution to autotrophic respiration.  相似文献   

17.
Root Growth and Carbohydrate Metabolism at Low Temperatures   总被引:4,自引:0,他引:4  
A study of carbohydrate metabolism in the roots of pea and maizeshows that the differing ability of these two species to growat low temperatures is associated with the maintenance of adequatesugar supplies to the root tip. In the maize root reducing theambient temperature to 2 °C causes a sharp and continuingfall in the soluble sugar content of the growing tip. A similartreatment with pea roots causes only a temporary reduction insugar content lasting no more than 24 h. The fall in root sugarsin maize is accompanied by a reduction in respiration rate andthe cessation of growth. During the periods of sugar shortagecaused by low temperatures both respiration and growth can bestimulated in root tips by a supply of exogenous glucose. Pearoots also show an additional ability to adapt to low temperaturesby lowering the Km value for invertase after pretreatment ata low temperature. This effect is not seen in maize.  相似文献   

18.
The Responses of Field-grown Sunflower and Maize to Mechanical Support   总被引:4,自引:1,他引:4  
The effects of mechanical support on two contrasting speciesof herbaceous annual, the dicot sunflower (Helianthus annuusL.) and the monocot maize (Zea mays L.), were investigated bycomparing the growth and mechanical properties of supportedplants and those which were left to sway freely in the wind. Providing support had its greatest effect on the more highly-stressedbasal areas of the plants, such as the lower stem and the baseof the lateral roots. The diameter of the stem bases of bothspecies was approx. 10% lower in supported plants, but therewas no difference between treatments in the diameter of thestem above 50 cm. Roots of both species also showed a reductionin rigidity and bending strength of 40–50% in the supportedplants compared with freely swaying plants. There was a significantreduction in the partitioning of biomass to the root systemsof supported plants of both species. There were differences in the way in which sunflower and maizeresponded to the provision of support; in sunflower, the reductionin lateral diameter was about twice that in maize, whereas inmaize the decrease in the number of first-order laterals wastwice that of sunflower. This study suggests that thigmomorphogenesismay be a localized response, but that different species canrespond in different ways to mechanical stimulation. Wind; support; anchorage; thigmomorphogenesis; Helianthus annuus L.; sunflower; Zea mays L.; maize  相似文献   

19.
We used a modified functional balance (FB) model to predictgrowth response of Helianthus annuus L. to elevated CO2. Modelpredictions were evaluated against measurements obtained twiceduring the experiment. There was a good agreement between modelpredictions of relative growth rate (RGR) responses to elevatedCO2and observations, particularly at the second harvest. Themodel was then used to compare the relative effects of biomassallocation to roots, nitrogen (N) uptake and photosyntheticN-use efficiency (PNUE) in determining plant growth responseto elevated CO2. The model predicted that a rather substantialincrease in biomass allocation to root growth had little effecton whole plant growth response to elevated CO2, suggesting thatplasticity in root allocation is relatively unimportant in determininggrowth response. Average N uptake rate at elevated comparedto ambient CO2was decreased by 21–29%. In contrast, elevatedCO2increased PNUE by approx. 50% due to a corresponding risein the CO2-saturation factor for carboxylation at elevated CO2.The model predicted that the decreased N uptake rate at elevatedCO2lowered RGR modestly, but this effect was counterbalancedby an increase in PNUE resulting in a positive CO2effect ongrowth. Increased PNUE may also explain why in many experimentselevated CO2enhances biomass accumulation despite a significantdrop in tissue nitrogen concentration. The formulation of theFB model as presented here successfully predicted plant growthresponses to elevated CO2. It also proved effective in resolvingwhich plant properties had the greatest leverage on such responses.Copyright 2000 Annals of Botany Company Elevated CO2, functional balance model, Helianthus annuus L., N uptake, photosynthetic nitrogen use efficiency, root:shoot ratio  相似文献   

20.
Root and Shoot Growth of Plants Treated with Abscisic Acid   总被引:4,自引:0,他引:4  
Young seedlings of Capsicum annum L., Commelina communis L.and maize (Zea mays L.) were subjected to a mild water-stressingtreatment and/or treated with abscisic acid (ABA). Plants rootedin soil received a soil-drying treatment and their leaves weresprayed with a 10–4 M solution of ABA. Plants grown insolution culture were stressed by the addition of polyethyleneglycol (PEG) to the rooting medium and ABA was also added tothe rooting medium, either with or without PEG. The effectsof both treatments on the growth of roots and shoots and theultimate root: shoot dry weight ratio were very similar. Shootgrowth was limited both by water stress and by ABA application;while there was some evidence that mild water stress and/orABA application may have resulted in a stimulation of root growth.More severe water stress reduced the growth of roots but theoverall effect of stress was to increase the ratio of rootsto shoots. Capsicum annum L., Commelina communis L., Zea mays L., water stress, abscisic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号