首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new multidomain mathematical model of cardiac cellular metabolism was developed to simulate metabolic responses to reduced myocardial blood flow. The model is based on mass balances and reaction kinetics that describe transport and metabolic processes of 31 key chemical species in cardiac tissue. The model has three distinct domains (blood, cytosol, and mitochondria) with interdomain transport of chemical species. In addition to distinguishing between cytosol and mitochondria, the model includes a subdomain in the cytosol to account for glycolytic metabolic channeling. Myocardial ischemia was induced by a 60% reduction in coronary blood flow, and model simulations were compared with experimental data from anesthetized pigs. Simulations with a previous model without compartmentation showed a slow activation of glycogen breakdown and delayed lactate production compared with experimental results. The addition of a subdomain for glycolysis resulted in simulations showing faster rates of glycogen breakdown and lactate production that closely matched in vivo experimental data. The dynamics of redox (NADH/NAD+) and phosphorylation (ADP/ATP) states were also simulated. These controllers are coupled to energy transfer reactions and play key regulatory roles in the cytosol and mitochondria. Simulations showed a similar dynamic response of the mitochondrial redox state and the rate of pyruvate oxidation during ischemia. In contrast, the cytosolic redox state displayed a time response similar to that of lactate production. In conclusion, this novel mechanistic model effectively predicted the rapid activation of glycogen breakdown and lactate production at the onset of ischemia and supports the concept of localization of glycolysis to a subdomain of the cytosol.  相似文献   

2.
Due to their role in cellular energetics and metabolism, skeletal muscle mitochondria appear to play a key role in the development of insulin resistance and type II diabetes. High-fat diet can induce higher levels of reactive oxygen species (ROS), evidenced by hydrogen peroxide (H2O2) emission from mitochondria, which may be causal for insulin resistance in skeletal muscle. The underlying mechanisms are unclear. Recent published data on single substrate (pyruvate, succinate, fat) metabolism in both normal diet (CON) and high-fat diet (HFD) states of skeletal muscle allowed us to develop an integrated mathematical model of skeletal muscle mitochondrial metabolism. Model simulations suggested that long-term HFD may affect specific metabolic reaction/pathways by altering enzyme activities. Our model allows us to predict oxygen consumption and ROS generation for any combination of substrates. In particular, we predict a synergy between (iso-membrane potential) combinations of pyruvate and fat in ROS production compared to the sum of ROS production with each substrate singly in both CON and HFD states. This synergy is blunted in the HFD state.  相似文献   

3.
Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the model simulations of exercise response are consistent with the hypothesis that mitochondrial NADH/NAD+ shuttling activity and muscle glycogen stores affect primarily the cytosolic redox state. Furthermore, muscle lactate production is regulated primarily by the cytosolic redox state.  相似文献   

4.
Two α-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the α-amylase gene, were characterized with respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition, and metabolic fluxes through the central metabolism during glucose-limited chemostat cultivations. Citrate synthase and isocitrate dehydrogenase (NAD) activities were found only in the mitochondria, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase (NADP) activities were found only in the cytosol, and isocitrate dehydrogenase (NADP), glutamate oxaloacetate transaminase, malate dehydrogenase, and glutamate dehydrogenase (NAD) activities were found in both the mitochondria and the cytosol. The measured biomass components and ash could account for 95% (wt/wt) of the biomass. The protein and RNA contents increased linearly with increasing specific growth rate, but the carbohydrate and chitin contents decreased. A metabolic model consisting of 69 fluxes and 59 intracellular metabolites was used to calculate the metabolic fluxes through the central metabolism at several specific growth rates, with ammonia or nitrate as the nitrogen source. The flux through the pentose phosphate pathway increased with increasing specific growth rate. The fluxes through the pentose phosphate pathway were 15 to 26% higher for the recombinant strain than for the wild-type strain.  相似文献   

5.
Mitochondria integrate the key metabolic fluxes in the cell. This role places this organelle at the center of cellular energetics and, hence, mitochondrial dysfunction underlies a growing number of human disorders and age-related degenerative diseases. Here we present novel analytical and technical methods for evaluating mitochondrial metabolism and (dys)function in human muscle in vivo. Three innovations involving advances in optical spectroscopy (OS) and magnetic resonance spectroscopy (MRS) permit quantifying key compounds in energy metabolism to yield mitochondrial oxidation and phosphorylation fluxes. The first of these uses analytical methods applied to optical spectra to measure hemoglobin (Hb) and myoglobin (Mb) oxygenation states and relative contents ([Hb]/[Mb]) to determine mitochondrial respiration (O2 uptake) in vivo. The second uses MRS methods to quantify key high-energy compounds (creatine phosphate, PCr, and adenosine triphosphate, ATP) to determine mitochondrial phosphorylation (ATP flux) in vivo. The third involves a functional test that combines these spectroscopic approaches to determine mitochondrial energy coupling (ATP/O2), phosphorylation capacity (ATPmax) and oxidative capacity (O2max) of muscle. These new developments in optical and MR tools allow us to determine the function and capacity of mitochondria noninvasively in order to identify specific defects in vivo that are associated with disease in human and animal muscle. The clinical implication of this unique diagnostic probe is the insight into the nature and extent of dysfunction in metabolic and degenerative disorders, as well as the ability to follow the impact of interventions designed to reverse these disorders.  相似文献   

6.
In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.  相似文献   

7.
T J Singh  K P Huang 《FEBS letters》1985,190(1):84-88
The distribution of glycogen synthase (casein) kinase-1 (CK-1) among different rat tissues and subcellular fractions was investigated. Using casein, glycogen synthase and phosphorylase kinase as substrates, CK-1 activity was detected in kidney, spleen, liver, testis, lung, brain, heart, skeletal muscle and adipose tissue. The distribution of CK-1 among different subcellular fractions of rat liver was; cytosol (72.1%), microsome (17.6%), mitochondria (9.6%) and nuclei (0.7%). CK-1 from rat tissues was shown to have a similarly wide substrate specificity as highly purified CK-1 from rabbit skeletal muscle. Such wide substrate specificity and distribution among different mammalian tissues and subcellular organelles indicate that CK-1 may be involved in the regulation of diverse cellular functions.  相似文献   

8.
A computational model of mitochondrial metabolism and electrophysiology is introduced and applied to analysis of data from isolated cardiac mitochondria and data on phosphate metabolites in striated muscle in vivo. This model is constructed based on detailed kinetics and thermodynamically balanced reaction mechanisms and a strict accounting of rapidly equilibrating biochemical species. Since building such a model requires introducing a large number of adjustable kinetic parameters, a correspondingly large amount of independent data from isolated mitochondria respiring on different substrates and subject to a variety of protocols is used to parameterize the model and ensure that it is challenged by a wide range of data corresponding to diverse conditions. The developed model is further validated by both in vitro data on isolated cardiac mitochondria and in vivo experimental measurements on human skeletal muscle. The validated model is used to predict the roles of NAD and ADP in regulating the tricarboxylic acid cycle dehydrogenase fluxes, demonstrating that NAD is the more important regulator. Further model predictions reveal that a decrease of cytosolic pH value results in decreases in mitochondrial membrane potential and a corresponding drop in the ability of the mitochondria to synthesize ATP at the hydrolysis potential required for cellular function.  相似文献   

9.
Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.  相似文献   

10.
Kronzucker HJ  Szczerba MW  Britto DT 《Planta》2003,217(4):540-546
Current models of potassium acquisition and cytochemical processes in plants assume that potassium concentrations in the cytosol ([K+]cyt) are maintained homeostatically at approximately 100 mM. Here, we use 42K radiotracer data in the model plant species Hordeum vulgare L. (barley) to show that this assumption is incorrect. Our study reveals that [K+]cyt in root cells of intact barley seedlings is held at a minimum of two physiological set points, coinciding with two fundamentally distinct modes of K+ transport, each of which is characterized by a unique network of fluxes to and from the cytosol, and reflects variations in mechanisms and energetics of K+ transport, cytosolic K+ turnover, flux partitioning, and sensitivity to NH4+. Increased external potassium or ammonium concentrations caused a substantial drop in [K+]cyt, as well as a switch from a transport mode dominated by high-affinity, energy-dependent, influx to a mode dominated by channel-mediated fluxes in both directions across the plasma membrane. Our study provides the first subcellular demonstration of the flexibility, rather than strict homeostasis, of cellular K+ maintenance, and of the dynamic interaction between plant membrane fluxes of the two major nutrient cations K+ and NH4+.  相似文献   

11.
The malate-aspartate (M-A) shuttle provides an important mechanism to regulate glycolysis and lactate metabolism in the heart by transferring reducing equivalents from cytosol into mitochondria. However, experimental characterization of the M-A shuttle has been incomplete because of limitations in quantifying cytosolic and mitochondrial metabolites. In this study, we developed a multi-compartment model of cardiac metabolism with detailed presentation of the M-A shuttle to quantitatively predict non-observable fluxes and metabolite concentrations under normal and ischemic conditions in vivo. Model simulations predicted that the M-A shuttle is functionally localized to a subdomain that spans the mitochondrial and cytosolic spaces. With the onset of ischemia, the M-A shuttle flux rapidly decreased to a new steady state in proportion to the reduction in blood flow. Simulation results suggest that the reduced M-A shuttle flux during ischemia was not due to changes in shuttle-associated enzymes and transporters. However, there was a redistribution of shuttle-associated metabolites in both cytosol and mitochondria. Therefore, the dramatic acceleration in glycolysis and the switch to lactate production that occur immediately after the onset of ischemia is mediated by reduced M-A shuttle flux through metabolite redistribution of shuttle associated species across the mitochondrial membrane.  相似文献   

12.
Aerobic metabolic flux depends on the diffusion of high-energy phosphate molecules (e.g., ATP and phosphocreatine) from the mitochondria to cellular ATPases, as well as the diffusion of other molecules (e.g., ADP, Pi) back to the mitochondria. Here, we develop an approach for evaluating the influence of intracellular metabolite diffusion on skeletal muscle aerobic metabolism through the application of the effectiveness factor (η). This parameter provides an intuitive and informative means of quantifying the extent to which diffusion limits metabolic flux. We start with the classical approach assuming an infinite supply of substrate at the fiber boundary, and we expand this model to ultimately include nonlinear boundary and homogeneous reactions. Comparison of the model with experimental data from a wide range of skeletal muscle types reveals that most muscle fibers are not substantially limited by diffusion (η close to unity), but many are on the brink of rather substantial diffusion limitation. This implies that intracellular metabolite diffusion does not dramatically limit aerobic metabolic flux in most fibers, but it likely plays a role in limiting the evolution of muscle fiber design and function.  相似文献   

13.
In recent years, it has been recognized that there is a metabolic coupling between the cytosol, ER/SR and mitochondria. In this cross-talk, mitochondrial Ca2+ homeostasis and ATP production and supply play a major role. The primary transporter of adenine nucleotides, Ca2+and other metabolites into and out of mitochondria is the voltage-dependent anion channel (VDAC) located at the outer mitochondrial membrane, at a crucial position in the cell. VDAC has been established as a key player in mitochondrial metabolite and ion signaling and it has also been proposed that VDAC is present in extramitochondrial membranes. Thus, regulation of VDAC, as the main interface between mitochondrial and cellular metabolism, by other molecules is of utmost importance. This article reviews localization and function of VDAC, and focuses on VDAC as a skeletal muscle sarcoplasmic reticulum channel. The regulation of VDAC activity by associated proteins and by inhibitors is also presented. Several aspects of the physiological relevance of VDAC to Ca2+ homeostasis and mitochondria-mediated apoptosis will be discussed.  相似文献   

14.
Previous studies have shown that increased oxygen delivery, via increased convection or arterial oxygen content, does not speed the dynamics of oxygen uptake, Vo(2m), in dog muscle electrically stimulated at a submaximal metabolic rate. However, the dynamics of transport and metabolic processes that occur within working muscle in situ is typically unavailable in this experimental setting. To investigate factors affecting Vo(2m) dynamics at contraction onset, we combined dynamic experimental data across working muscle with a mechanistic model of oxygen transport and metabolism in muscle. The model is based on dynamic mass balances for O(2), ATP, and PCr. Model equations account for changes in cellular ATPase, oxidative phosphorylation, and creatine kinase fluxes in skeletal muscle during exercise, and cellular respiration depends on [ADP] and [O(2)]. Model simulations were conducted at different levels of arterial oxygen content and blood flow to quantify the effects of convection and diffusion of oxygen on the regulation of cellular respiration during step transitions from rest to isometric contraction in dog gastrocnemius muscle. Simulations of arteriovenous O(2) differences and (.)Vo(2m) dynamics were successfully compared with experimental data (Grassi B, Gladden LB, Samaja M, Stary CM, Hogan MC. J Appl Physiol 85: 1394-1403, 1998; and Grassi B, Gladden LB, Stary CM, Wagner PD, Hogan MC. J Appl Physiol 85: 1404-1412, 1998), thus demonstrating the validity of the model, as well as its predictive capability. The main findings of this study are: 1) the estimated dynamic response of oxygen utilization at contraction onset in muscle is faster than that of oxygen uptake; and 2) hyperoxia does not accelerate the dynamics of diffusion and consequently muscle oxygen uptake at contraction onset due to the hyperoxia-induced increase in oxygen stores. These in silico derived results cannot be obtained from experimental observations alone.  相似文献   

15.
Bayesian flux balance analysis applied to a skeletal muscle metabolic model   总被引:1,自引:0,他引:1  
In this article, the steady state condition for the multi-compartment models for cellular metabolism is considered. The problem is to estimate the reaction and transport fluxes, as well as the concentrations in venous blood when the stoichiometry and bound constraints for the fluxes and the concentrations are given. The problem has been addressed previously by a number of authors, and optimization-based approaches as well as extreme pathway analysis have been proposed. These approaches are briefly discussed here. The main emphasis of this work is a Bayesian statistical approach to the flux balance analysis (FBA). We show how the bound constraints and optimality conditions such as maximizing the oxidative phosphorylation flux can be incorporated into the model in the Bayesian framework by proper construction of the prior densities. We propose an effective Markov chain Monte Carlo (MCMC) scheme to explore the posterior densities, and compare the results with those obtained via the previously studied linear programming (LP) approach. The proposed methodology, which is applied here to a two-compartment model for skeletal muscle metabolism, can be extended to more complex models.  相似文献   

16.
A model is presented to describe the observed behavior of microorganisms that aim at metabolic homeostasis while growing and adapting to their environment in an optimal way. The cellular metabolism is seen as a network with a multiple controller system with both feedback and feedforward control, i.e., a model based on a dynamic optimal metabolic control. The dynamic network consists of aggregated pathways, each having a control setpoint for the metabolic states at a given growth rate. This set of strategies of the cell forms a true cybernetic model with a minimal number of assumptions. The cellular strategies and constraints were derived from metabolic flux analysis using an identified, biochemically relevant, stoichiometry matrix derived from experimental data on the cellular composition of continuous cultures of Saccharomyces cerevisiae. Based on these data a cybernetic model was developed to study its dynamic behavior. The growth rate of the cell is determined by the structural compounds and fluxes of compounds related to central metabolism. In contrast to many other cybernetic models, the minimal model does not consist of any assumed internal kinetic parameters or interactions. This necessitates the use of a stepwise integration with an optimization of the fluxes at every time interval. Some examples of the behavior of this model are given with respect to steady states and pulse responses. This model is very suitable for describing semiquantitatively dynamics of global cellular metabolism and may form a useful framework for including structured and more detailed kinetic models.  相似文献   

17.
18.
Experiments were designed to evaluate whether cardiac ischemia affected the subcellular distribution of calmodulin activity. Major cellular fractions (nuclei, mitochondria, sarcoplasmic reticulum and cytosol) were isolated from globally ischemic hearts by differential centrifugation. Ischemia did not affect calmodulin activity in cell fractions other than sarcoplasmic reticulum, which showed a consistent and complete loss of activity. This site-specific loss of calmodulin activity may be one mechanism by which ischemia induces contractile dysfunction.  相似文献   

19.
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.  相似文献   

20.
Metabolic syndrome is a cluster of risk factors, such as obesity, insulin resistance, and hyperlipidemia that increases the individual’s likelihood of developing cardiovascular diseases. Patients inflicted with metabolic disorders also suffer from tissue repair defect. Mitsugumin 53 (MG53) is a protein essential to cellular membrane repair. It facilitates the nucleation of intracellular vesicles to sites of membrane disruption to create repair patches, contributing to the regenerative capacity of skeletal and cardiac muscle tissues upon injury. Since individuals suffering from metabolic syndrome possess tissue regeneration deficiency and MG53 plays a crucial role in restoring membrane integrity, we studied MG53 activity in mice models exhibiting metabolic disorders induced by a 6 month high-fat diet (HFD) feeding. Western blotting showed that MG53 expression is not altered within the skeletal and cardiac muscles of mice with metabolic syndrome. Rather, we found that MG53 levels in blood circulation were actually reduced. This data directly contradicts findings presented by Song et. al that indict MG53 as a causative factor for metabolic syndrome (Nature 494, 375-379). The diminished MG53 serum level observed may contribute to the inadequate tissue repair aptitude exhibited by diabetic patients. Furthermore, immunohistochemical analyses reveal that skeletal muscle fibers of mice with metabolic disorders experience localization of subcellular MG53 around mitochondria. This clustering may represent an adaptive response to oxidative stress resulting from HFD feeding and may implicate MG53 as a guardian to protect damaged mitochondria. Therapeutic approaches that elevate MG53 expression in serum circulation may be a novel method to treat the degenerative tissue repair function of diabetic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号