首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have determined the 1.8 A X-ray crystal structure of a monoheme c-type cytochrome, cytochrome P460, from Nitrosomonas europea. The chromophore possesses unusual spectral properties analogous to those of the catalytic heme P460 of hydroxylamine oxidoreductase (HAO), the only known heme in biology to withdraw electrons from an iron-coordinated substrate. The analysis reveals a homodimeric structure and elucidates a new c-type cytochrome fold that is predominantly beta-sheet. In addition to the two cysteine thioether links to the porphyrin typical of c-type hemes, there is a third proteinaceous link involving a conserved lysine. The covalent bond is between the lysine side-chain nitrogen and the 13'-meso carbon of the heme, which, following cross-link formation, is sp3-hybridized, demonstrating the loss of conjugation at this position within the porphyrin. The structure has implications for the analogous tyrosine-heme meso carbon cross-link observed in HAO.  相似文献   

2.
Cytochrome c′ of Methylococcus capsulatus Bath is involved in electron flow from the enzyme responsible for hydroxylamine oxidation, cytochrome P460, to cytochrome c 555. This cytochrome is spectrally similar to other cytochromes c′ but is larger (16,000 Da) and has a lower midpoint potential (–205 mV). By a combination of Edman degradation, mass spectroscopy, and gene sequencing, we have obtained the primary structure of cytochrome c′ from M. capsulatus Bath. The cytochrome shows low sequence similarity to other cytochromes c′, only residues R12, Y53, G56, and the C-terminal heme-binding region (GXXCXXCHXXXK) being conserved. In contrast, cytochrome c′ from M. capsulatus Bath shows considerable sequence similarity to cytochromes P460 from M. capsulatus Bath (31% identity) and from Nitrosomonas europaea (18% identity). This suggests that P460-type cytochromes may have originated from a c′-type cytochrome which developed a covalent cross-link between a lysine residue and the c′-heme. Received: 26 May 1999 / Accepted: 9 September 1999  相似文献   

3.
The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.  相似文献   

4.
P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium.  相似文献   

5.
Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c554; and cycB, cytochrome cm552. The deduced protein sequences of HAO, c554, and cm552 were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes cm552, NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c554 gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c554 gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.  相似文献   

6.
Cytochrome P-460 of Nitrosomonas europaea [Erickson, R.H. and Hooper, A.B. (1972) Biochim. Biophys. Acta 275, 231-244] was further purified to an electrophoretically homogeneous state. The cytochrome molecule was composed of three molecules of subunits with Mr of 17,300-18,500, and contained three atoms of iron, which seemed to be heme iron, and six cysteine residues, but did not contain nonheme iron or inorganic sulfide. The cytochrome showed absorption peaks at 460 and 688 nm with a broad shoulder at 635 nm in the reduced form. The ESR spectrum of ferricytochrome P-460 showed signals at g = 5.91, 5.63, and 1.99, indicating that the protein was a high spin hemoprotein. The heme of the cytochrome was not cleaved by the methods which were available for cleavage of heme c. The pyridine ferrohemochrome of the hemoprotein did not show the distinct alpha and beta peaks which are shown by the ferrohemochromes of many other cytochromes so far known. The N-terminal amino acid sequence of cytochrome P-460 differed from that of hydroxylamine oxidoreductase. Therefore, cytochrome P-460 did not seem to be the solubilized P-460 moiety of hydroxylamine oxidoreductase, in agreement with the finding by D.J. Miller et al. [J. Gen. Microbiol. 130, 3049-3054 (1984)]. However, cytochrome P-460 had several enzymatic activities which hydroxylamine oxidoreductase showed. Although most of the activities of the cytochrome were lower than the corresponding activities of the oxidoreductase, the hydroxylamine-cytochrome c-552 reductase activity of the cytochrome was about 5-times as high as that of the oxidoreductase.  相似文献   

7.
Hydroxylamine oxidoreductase (HAO) from the autotrophic nitrifying bacterium Nitrosomonas europaea catalyzes the oxidation of NH2OH to NO2-. The enzyme contains eight hemes per subunit which participate in catalysis and electron transport. NO is found to bind to the enzyme and inhibit electron flow to the acceptor protein, cytochrome c554. NO is found to oxidize either partially or fully reduced HAO, but NO will not reduce ferric HAO. Since NO can be reduced but not oxidized to product by HAO, NO is not considered to be a long-lived intermediate in the catalytic mechanism. Substrate oxidation occurs in the presence of bound NO or cyanide, suggesting a second interaction site for substrate with HAO and providing a means for recovery of the NO-inhibited form of the enzyme. Upon addition of NO to oxidized HAO, the integer-spin EPR signal from the active site vanishes, an IR band from NO appears at 1920 cm(-1), and a diamagnetic quadrupole iron doublet appears in M?ssbauer spectroscopy with delta = 0.06 mm/s and DeltaEq = 2.1 mm/s. The NO stretching frequency and M?ssbauer parameters are characteristic of an [FeNO]6 heme complex. New M?ssbauer data on ferric myoglobin-NO are also presented for comparison. The results indicate that NO binds to heme P460 and that the loss of the integer-spin EPR signal is due to the conversion of heme P460 to a diamagnetic S = 0 state and concomitant loss of magnetic interaction with neighboring heme 6. In previous studies where the heme P460-heme 6 interaction was affected by substrate or cyanide binding, a signal attributable to heme 6 was not observable. In contrast, in this work, the NO-induced loss of the signal is accompanied by the appearance of a previously unobserved large g(max) (or HALS) low-spin EPR signal from heme 6.  相似文献   

8.
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5–6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other -subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published -subdivision proteobacterial sequences.Abbreviations COI cytochrome oxidase subunit I - COII cytochrome oxidase subunit II - COIII cytochrome oxidase subunit III - HOS Heme O synthase - ORF open reading frame - SDS sodium dodecyl sulfate  相似文献   

9.
Cytochrome c is a heme protein involved in electron transfer, cell apoptosis, and diseases associated with oxidative stress. Here we expressed human cytochrome c in E. coli and purified it to homogeneity with a yield of 10–15 mg/L. The redox potential of recombinant human cytochrome c was 0.246 V which was measured by cyclic voltammetry. This is similar to that of horse cytochrome c with a value of 0.249 V. The sequential assignment and structural analysis of recombinant human ferrocytochrome c were obtained using multidimensional NMR spectroscopy. On the basis of our NMR studies, the recombinant human cytochrome c produced in E. coli exhibits the same tertiary fold as horse cytochrome c. These results provide evidence that human cytochrome c expressed in E. coli possesses a similar function and structure to that of the horse protein. It is known that cytochrome c plays a role in many human diseases. This study serves as the basis for gaining insight into human diseases by exploring structure and function relationships of cytochrome c to its interacting proteins.  相似文献   

10.
The heme of cytochrome P460 of Nitrosomonas europaea, which is covalently crosslinked to two cysteines of the polypeptide as with all c-type cytochromes, has an additional novel covalent crosslink to lysine 70 of the polypeptide [Arciero, D.M. & Hooper, A.B. (1997) FEBS Lett.410, 457-460]. The protein can catalyze the oxidation of hydroxylamine. The gene for this protein, cyp, was expressed in Pseudomonas aeruginosa strain PAO lacI, resulting in formation of a holo-cytochrome P460 which closely resembled native cytochrome P460 purified from N. europaea in its UV-visible spectroscopic, ligand binding and catalytic properties. Mutant versions of cytochrome P460 of N. europaea in which Lys70 70 was replaced by Arg, Ala, or Tyr, retained ligand-binding ability but lost catalytic ability and differed in optical spectra which, instead, closely resembled those of cytochromes c'. Tryptic fragments containing the c-heme joined only by two thioether linkages were observed by MALDI-TOF for the mutant cytochromes P460 K70R and K70A but not in wild-type cytochrome P460, consistent with the structural modification of the c-heme only in the wild-type cytochrome. The present observations support the hypothesized evolutionary relationship between cytochromes P460 and cytochromes c' in N. europaea and M. capsulatus[Bergmann, D.J., Zahn, J.A., & DiSpirito, A.A. (2000) Arch. Microbiol. 173, 29-34], confirm the importance of a heme-crosslink to the spectroscopic properties and catalysis and suggest that the crosslink might form auto-catalytically.  相似文献   

11.
The complete amino acid sequence of cytochrome c-552 derived from the chemoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea was determined. The cytochrome consisted of 81 amino acid residues, and its molecular weight was calculated to be 9098 including heme c. Although the sequence of cytochrome c-552 was highly homologous to those of cytochromes c-551, which were known as the electron-donating components to dissimilatory nitrite reductase in pseudomonads, cytochrome c-552 differed from cytochrome c-551 in two points: (1) the sequence of cytochrome c-552 was shorter by two amino acid residues than that of cytochrome c-551 at the N-terminus and (2) one amino acid insertion was present in cytochrome c-552.  相似文献   

12.
Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite‐ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host‐associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep‐sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao‐maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao‐typical absorbance maximum at 460 nm. In most cases, the εHao‐encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane‐bound HaoCA assembly reminiscent of the menaquinol‐oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a ‘missing link’ in the evolution of NrfA and Hao enzymes.  相似文献   

13.
Cytochrome c6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c6A and c6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role.  相似文献   

14.
Cytochrome c-550 was purified from Magnetospirillum magnetotacticum to an electrophoretically homogeneous state, and some of its properties were determined. The cytochrome showed absorption peaks at 528 and 409 nm in the oxidized form, and at 550, 521, and 414 nm in the reduced form. Its midpoint redox potential at pH 7.0 was determined to be +289 mV. The primary structure of cytochrome c-550 was determined. Cytochrome c is composed of 97 amino acid residues, and its molecular weight was calculated to be 10,873, including heme c. Its primary structure is very similar to those of Rhodospirillum fulvum and Rhodospirillum molischianum cytochromes c 2, suggesting that M. magnetotacticum is phylogenetically related to photosynthetic bacteria.  相似文献   

15.
K. Krab  E.C. Slater 《BBA》1979,547(1):58-69
1. In the absence of cytochrome c, ferrocyanide or ferrous sulphate reduces cytochrome c oxidase (EC 1.9.3.1), but no continuous oxygen uptake ensues, as it does with N,N,N′,N′-Tetramethyl-p-phenylenediamine or reduced phenazine methosulphate as reductants, unless a substoichiometric amount of cytochrome c or an excess of clupein is present. Cytochrome c cannot be replaced by porphyrin cytochrome c.2. Cytochrome c, porphyrin cytochrome c and clupein all stimulate the reduction of cytochrome aa3 by ferrocyanide.3. A model is proposed to explain these findings in which a high-affinity site for cytochrome c on the oxidase regulates the access of hydrophilic electron donors to a low-affinity site, and reduction via the high-affinity site is required for continuous oxygen uptake.4. Furthermore, it is shown that upon reaction of oxidase with ferrocyanide, cyano-oxidase is formed.  相似文献   

16.
《BBA》1985,806(2):320-330
Two membrane-associated cytochromes, cytochrome cm-553 and cytochrome cm-552, were derived from Nitrosomonas europaea. The major c-type cytochrome, cytochrome cm-553, accounted for 92% of the c heme found in the membrane. It had absorption maxima at 410 nm in the oxidized form and at 417, 523 and 553 nm in the dithionite reduced form. Cytochrome cm-552 possessed absorption maxima at 409 nm in the oxidized form, at 421, 522 and 552 in the dithionite reduced form, and at 418 in the dithionite reduced plus CO form. The concentration and cellular distribution of the two c-type membrane cytochromes, hydroxylamine oxidoreductase and cytochromes c-552, c-554, and a were determined. Over 95% of the soluble cytochromes (hydroxylamine oxidoreductase cytochromes and c-552 and c-554) were periplasmic, whereas cytochrome cm-553, cytochrome cm-552 and cytochrome a were associated with the cell membrane. The outer membrane and cytoplasm were devoid of cytochromes. The extracytoplasmic location of the proton-yielding hydroxylamine oxidizing system (NH2OH ™ HNO + 2H+ + 2e) may contribute to an energy-linked proton gradient. The heme concentrations of hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 2.4, 1.2, 0.3, 1.3, 0.1 and 1.1 nmol/mg cell protein, respectively. The corresponding molar ratios of heme were 22:11:2.9:12:1.0:10. The enzyme or cytochrome concentrations for hydroxylamine oxidoreductase and cytochromes c-552, c-554, cm-553, cm-552 and a were approx. 0.13, 1.05, 0.09, 0.63, 0.055 and 0.56 nmol/mg cell protein, respectively. The corresponding molar ratios were 0.24:2.2:0.16:1.2:0.1:1.0.  相似文献   

17.
From a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F, a membrane-bound cytochrome c-551 and a cytoplasmic cytochrome c-552 were purified. The cytochrome c-551 contained 44.2 nmol of heme c mg protein−1 and cytochrome c-552 contained 31.3 nmol of heme c mg protein−1. The CO difference spectrum of cytochrome c-551 showed a peak at 413.7 nm and troughs at 423.2, 522 and 552 nm which indicated that this cytochrome combined with CO. Cytochrome c-551 was found to consist of two subunits with molecular masses of 29.1 kDa and 14.7 kDa, respectively, and each subunit contained one heme c molecule. Cytochrome c-552 also consisted of two subunits with molecular masses of 16.9 kDa and 14.7 kDa, respectively, and only one of these subunits contained heme c. Cytochrome c-551 was constitutively synthesized when the cells were grown at pressures of either 0.1 MPa or 60 MPa, whereas cytochrome c-552 was synthesized only at 0.1 MPa. These results together with the results of analysis of membrane-associated catalytic activities suggest that the respiratory system of DB-172F is regulated by pressure and may be intimately related to the baroadaptability mechanism of this deep-sea bacterium.  相似文献   

18.
The biosynthesis of bacterial and plastidic c-type cytochromes includes several steps that occur post-translationally. In the case of bacterial cytochromes, the cytosolically synthesized pre-proteins are translocated across the cytoplasmic membrane, the pre-proteins are cleaved to their mature forms and heme is ligated to the processed apoprotein. Although heme attachment has not been studied extensively at the biochemical level, molecular genetic approaches suggest that the reaction generally occurs after translocation of the apoprotein to the periplasm. Recent studies with Bradyrhizobium japonicum and Rhodobacter capsulatus indicate that the process of heme attachment requires the function of a large number of genes. Mutation of these genes generates a pleiotropic deficiency in all c-type cytochromes, suggesting that the gene products participate in processes required for the biosynthesis of all c-type cytochromes. In eukaryotic cells, the biosynthesis of photosynthetic c-type cytochromes is somewhat more complex owing to the additional level of compartmentation. Nevertheless, the basic features of the pathway appear to be conserved. For instance, as is the case in bacteria, translocation and processing of the pre-proteins is not dependent on heme attachment. Genetic analysis suggests that the nuclear as well as the plastid genomes encode functions required for heme attachment, and that these genes function in the biosynthesis of the membrane-associated as well as the soluble c-type cytochrome of chloroplasts. A feature of cytochromes c biogenesis that appears to be conserved between chloroplasts and mitochondria is the sub-cellular location of the heme attachment reaction (p-side of the energy transducing membrane). Continued investigation of all three experimental systems (bacteria, chloroplasts, mitochondria) is likely to lead to a greater understanding of the biochemistry of cytochrome maturation as well as the more general problem of cofactor-protein association during the assembly of an energy transducing membrane.Abbreviations CCHL cytochrome c/heme lyase - CC1HL cytochrome cl/heme lyase - cyt cytochrome - EMS ethyl methane sulphonate - n-side electrochemically negative side of an energy transducing membrane - p-side electrochemically positive side of an energy transducing membrane - PhoA alkaline phosphatase (encoded by the phoA locus)  相似文献   

19.
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA–H) and is proposed to transport heme via CcmC to an external “WWD” domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining “2-vinyl” and “4-vinyl” pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.  相似文献   

20.
The cytochrome c553 from Desulfovibrio vulgaris (DvH c553) is of importance in the understanding of the relationship of structure and function of cytochrome c due to its lack of sequence homology with other cytochromes, and its abnormally low oxido-reduction potential. In evolutionary terms, this protein also represents an important reference point for the understanding of both bacterial and mitochondrial cytochromes c. Using the recently determined nuclear magnetic resonance (NMR) structure of the reduced protein we compare the structural, dynamic, and functional characteristics of DvH c553 with members of both the mitochondrial and bacterial cytochromes c to characterize the protein in the context of the cytochrome c family, and to understand better the control of oxido-reduction potential in electron transfer proteins. Despite the low sequence homology, striking structural similarities between this protein and representatives of both eukaryotic [cytochrome c from tuna (tuna c)] and prokaryotic [Pseudomonas aeruginosa c551 (Psa c551)] cytochromes c have been recognized. The previously observed helical core is also found in the DvH c553. The structural framework and hydrogen bonding network of the DvH c553 is most similar to that of the tuna c, with the exception of an insertion loop of 24 residues closing the heme pocket and protecting the propionates, which is absent in the DvH c553. In contrast, the Psa c551 protects the propionates from the solvent principally by extending the methionine ligand arm. The electrostatic distribution at the recognized encounter surface around the heme in the mitochondrial cytochrome is reproduced in the DvH c553, and corresponding hydrogen bonding networks, particularly in the vicinity of the heme cleft, exist in both molecules. Thus, although the cytochrome DvH c553 exhibits higher primary sequence homology to other bacterial cytochromes c, the structural and physical homology is significantly greater with respect to the mitochondrial cytochrome c. The major structural and functional difference is the absence of solvent protection for the heme, differentiating this cytochrome from both reference cytochromes, which have evolved different mechanisms to cover the propionates. This suggests that the abnormal redox potential of the DvH c553 is linked to the raised accessibility of the heme and supports the theory that redox potential in cytochromes is controlled by heme propionate solvent accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号