首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The betabellin target structure consists of 2 32-residue beta sheets packed against each other by hydrophobic interactions. We have designed, chemically synthesized, and biophysically characterized betabellin 14S, a single chain, and betabellin 14D, the disulfide-bridged double chain. The 32-residue nongenetic betabellin-14 chain (HSLTASIkaLTIHVQakTATCQVkaYTVHISE, a = D-Ala, k = D-Lys) has a palindromic pattern of polar (p), nonpolar (n), end (e), and beta-turn (t,r) residues (epnpnpnttnpnpnprrpnpnpnttnpnpnpe). Each half contains the same 14-residue palindromic pattern (underlined). Pairs of D-amino acid residues are used to favor formation of inverse-common (type-I') beta turns. In water at pH 6.5, the single chain of betabellin 14S is not folded, but the disulfide-linked betabellin 14D is folded into a stable beta-sheet structure. Thus, folding of the covalent dimer beta-bellin 14D is induced by formation of the single interchain disulfide bond. The binary pattern of alternating polar and nonpolar residues of its beta-sheets is not sufficient to induce folding. Betabellin 14D is a very water-soluble (10 mg/mL), small (64 residues), nongenetic (12 D residues) beta-sheet protein with properties (well-dispersed proton NMR resonances; Tm = 58 degrees C and delta Hm = 106 kcal/mol at pH 5.5) like those of a native protein structure.  相似文献   

2.
The betabellin structure is a de novo designed beta-sandwich protein consisting of two 32-residue beta-sheets packed against one another by hydrophobic interactions. d-Amino acid residues are used to energetically favor formation of type-I' beta turns. Air oxidation of betabellin 15S (B15S) (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p denotes d-Pro, h denotes d-His, and k denotes d-Lys) yields betabellin 15D (B15D), a 64-residue disulfide-bridged protein. The amino acid sequence of B15D contains a conformationally constrained d-Pro residue at the i + 1 position of each type-I' beta turn. To test whether d-Pro residues are necessary for folding at these positions, the six d-Pro residues of B15D are replaced by d-Ala residues in betabellin 16D (B16D). Previously, transmission electron microscopy showed that B15D forms unbranched, 35-A wide fibrils that associate into bundles in 5.0 mM 3-(N-morpholino)propanesulfonate and 250 mM NaCl at pH 7; under these conditions, B16D forms ribbon-like assemblies. The B15D fibrils resemble the protofilaments that constitute amyloid fibrils. The present studies show that both B15D and B16D have characteristics of amyloidogenic proteins: the unbranched fibrils and ribbons stained with Congo red and displayed a green birefringence, exhibited a cross-beta structure, and bound 1-anilino-8-naphthalenesulfonate. Thus, these de novo designed beta-sandwich proteins should provide useful models for studying the mechanism of amyloid protofilament formation and assembly into amyloid fibrils and for designing potential inhibitors of amyloidogenesis.  相似文献   

3.
The betabellin target structure is a beta-sandwich protein consisting of two 32 residue beta-sheets packed against one another by interaction of their hydrophobic faces. The 32 residue chain of betabellin-15S (HSLTAKIpkLTFSIAphTYTCAV pkYTAKVSH, where p=DPro, k=DLys, and h=DHis) did not fold in water at pH 6.5. Air oxidation of betabellin-15S provided betabellin-15D, the 64 residue disulfide bridged two-chain molecule, which also remained unfolded in water at pH 6.5. By circular dichroic spectropolarimetry, the extent of beta structure observed for betabellin-15D increased with the pH and ionic strength of the solution and the betabellin-15D concentration. By electron microscopy, in 5.0 mM MOPS and 0.25 M NaCl at pH 6.9, betabellin-15D formed long narrow multimeric fibrils. A molecular model was constructed to show that the dimensions of these betabellin-15D fibrils are consistent with a single row of beta-sandwich molecules joined by multiple intersheet H-bonds.  相似文献   

4.
The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue -sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited -sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7 ± 2 nm) was consistent with the width (6.8 nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D -sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

5.
Summary The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, wherep=DPro,k=DLys, andh=DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7±2 nm) was consistent with the width (6.8nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.  相似文献   

6.
Betabellin is a 32-residue peptide engineered to fold into a four-stranded antiparallel beta-sheet protein. Upon air oxidation, the betabellin peptides can fold and assemble into a disulfide-bridged homodimer, or beta-sandwich, of 64 residues. Recent biophysical and ultrastructural studies indicate that betabellin 15D (B15D) (a homodimer of HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) forms unbranched, 35-A wide assemblies that resemble the protofilaments of amyloid fibers. In the present study, we have analyzed in detail the X-ray diffraction patterns of B15D prepared from acetonitrile. The fiber diffraction analysis indicated that the B15D fibril was composed of a double helix defined by the selection rule l = n + 7m (where l is even, and n and m are any integers), and having a 199-A period and pitch, 28-A rise per unit, and 10-A radius. This helical model is equivalent to a reverse-handed, single helix with half the period and defined by the selection rule l = -3n + 7m (where l is any integer). The asymmetric unit is the single B15D beta-sandwich molecule. These results suggest that the betabellin assembly that models the protofilaments of amyloid fibers is made up of discrete subunits on a helical array. Multiple intersheet hydrogen bonds in the axial direction and intersandwich polar interactions in the lateral direction stabilize the array.  相似文献   

7.
The transition of rhodopsin from the inactive to the active state is associated with proton uptake at Glu(134) (1), and recent mutagenesis studies suggest that protonation of the homologous amino acid in the alpha(1B) adrenergic receptor (Asp(142)) may be involved in its mechanism of activation (2). To further explore the role of protonation in G protein-coupled receptor activation, we examined the effects of pH on the rate of ligand-induced conformational change and on receptor-mediated G protein activation for the beta(2) adrenergic receptor (beta(2)AR). The rate of agonist-induced change in the fluorescence of NBD-labeled, purified beta(2)AR was 2-fold greater at pH 6.5 than at pH 8, even though agonist affinity was lower at pH 6.5. This biophysical analysis was corroborated by functional studies; basal (agonist-independent) activation of Galpha(s) by the beta(2)AR was greater at pH 6.5 compared with pH 8.0. Taken together, these results provide evidence that protonation increases basal activity by destabilizing the inactive state of the receptor. In addition, we found that the pH sensitivity of beta(2)AR activation is not abrogated by mutation of Asp(130), which is homologous to the highly conserved acidic amino acids that link protonation to activation of rhodopsin (Glu(134)) and the alpha(1B) adrenergic receptor (Asp(142)).  相似文献   

8.
Amyloid fibrils formed from unrelated proteins often share morphological similarities, suggesting common biophysical mechanisms for amyloidogenesis. Biochemical studies of human beta-2 microglobulin (beta2M) have shown that its transition from a water-soluble protein to insoluble aggregates can be triggered by low pH. Additionally, biophysical measurements of beta2M using NMR have identified residues of the protein that participate in the formation of amyloid fibrils. The crystal structure of monomeric human beta2M determined at pH 5.7 shows that one of its edge beta-strands (strand D) adopts a conformation that differs from other structures of the same protein obtained at higher pH. This alternate beta-strand arrangement lacks a beta-bulge, which may facilitate protein aggregation through intermolecular beta-sheet association. To explore whether the pH change may yield the observed conformational difference, molecular dynamics simulations of beta2M were performed. The effects of pH were modeled by specifying the protonation states of Asp, Glu, and His, as well as the C terminus of the main chain. The bulged conformation of strand D is preferred at medium pH (pH 5-7), whereas at low pH (pH < 4) the straight conformation is observed. Therefore, low pH may stabilize the straight conformation of edge strand D and thus increase the amyloidogenicity of beta2M.  相似文献   

9.
Columnaris disease caused by Flavobacterium columnare is a problem in fish farming worldwide. During the last 15 yr, outbreaks have started to emerge in Finland. Flavobacterium columnare Type Strain NCIMB 2248T and 30 Finnish F. columnare isolates were studied using analysis of 16S rDNA by restriction-fragment length polymorphism (16S RFLP), length heterogeneity analysis of polymerase chain reaction (LH-PCR) products, automated ribosomal intergenic spacer analysis (ARISA), and 16S rDNA sequence analysis. All isolates fell into RFLP Genomovar I and had the same length in the LH-PCR analysis. Based on ARISA, 8 genetically different strains were selected for further analyses. The growth of these strains under different temperatures, NaCl concentrations, and pH values was tested. The Finnish F. columnare strains did not grow at NaCl concentrations >0.1% or at pH values < or = 6.5, and they were susceptible to several antimicrobial agents, but not to Polymyxin B or neomycin. These findings may aid in development of methods for disease management at fish farms.  相似文献   

10.
The nuclear magnetic resonance structure of the unliganded pheromone-binding protein (PBP) from Bombyx mori at pH above 6.5, BmPBP(B), consists of seven helices with residues 3-8, 16-22, 29-32, 46-59, 70-79, 84-100, and 107-124, and contains the three disulfide bridges 19-54, 50-108, and 97-117. This polypeptide fold encloses a large hydrophobic cavity, with a sufficient volume to accommodate the natural ligand bombykol. The polypeptide folds in free BmPBP(B) and in crystals of a BmPBP-bombykol complex are nearly identical, indicating that the B-form of BmPBP in solution represents the active conformation for ligand binding.  相似文献   

11.
S100B is a Ca(2+)-binding protein known to be a non-covalently associated dimer, S100B(beta beta), at high concentrations (0.2-3.0 mM) under reducing conditions. The solution structure of apo-S100B (beta beta) shows that the subunits associate in an antiparallel manner to form a tightly packed hydrophobic core at the dimer interface involving six of eight helices and the C-terminal loop (Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ. 1996. Solution structure of rat apo-S100B (beta beta) as determined by NMR spectroscopy. Biochemistry 35:11577-11588). The C-terminal loop, however, is also known to participate in the binding of S100B to target proteins, so its participation in the dimer interface raises questions as to the physiological relevance of dimeric S100B (beta beta). Therefore, we investigated the oligomerization state of S100B at low concentrations (1-10,000 nM) using large-zone analytical gel filtration chromatography with 35S-labeled S100B. We found that S100B exists (> 99%) as a non-covalently associated dimer, S100B (beta beta), at 1 nM subunit concentration (500 pM dimer) in the presence or absence of saturating levels of Ca2+, which implies a dissociation constant in the picomolar range or lower. These results demonstrate for the first time that in reducing environments and at physiological concentrations, S100B exists as dimeric S100B (beta beta) in the presence or absence of Ca2+, and that the non-covalent dimer is most likely the form of S100B presented to target proteins.  相似文献   

12.
The neurotoxicity of beta-amyloid protein (beta AP) fragments may be a result of their solution conformation, which is very sensitive to solution conditions. In this work we describe NMR and CD studies of the conformation of beta AP(12-28) in lipid (micelle) environments as a function of pH and lipid type. The interaction of beta AP(12-28) with zwitterionic dodecylphosphocholine (DPC) micelles is weak and alters the conformation when compared to water solution alone. By contrast, the interaction of the peptide with anionic sodium dodecylsulfate (SDS) micelles is strong: beta AP(12-28) is mostly bound, is alpha-helical from K16 to V24, and aggregates slowly. The pH-dependent conformation changes of beta AP(12-28) in solution occur in the pH range at which the side-chain groups of E22, D23, H13, and H14 are deprotonated (pKas ca. 4 and 6.5); the interaction of beta AP(12-28) with SDS micelles alters the pH-dependent conformational transitions of the peptide whereas the weak interaction with DPC micelles causes little change.  相似文献   

13.
Thapar R  Mueller GA  Marzluff WF 《Biochemistry》2004,43(29):9390-9400
Stem-loop binding protein (SLBP) is a 31 kDa protein that is central to the regulation of histone mRNAs and is highly conserved in metazoans. In vertebrates, the N-terminal domain of SLBP has sequence determinants necessary for histone mRNA translation, SLBP degradation, cyclin binding, and histone mRNA import. We have used high-resolution NMR spectroscopy and circular dichroism to characterize the structural and dynamic features of this domain of SLBP from Drosophila (dSLBP). We report that the N-terminal domain of dSLBP is stably unfolded but has nascent helical structure at physiological pH and native-like solution conditions. The conformational and dynamic properties of the isolated domain are mimicked in a longer 175-residue region of the N-terminus, as well as in the full-length protein. Complete resonance assignments, secondary structure propensity, and motional properties of a 91-residue N-terminal domain (G17-K108) of dSLBP are reported here. The deviation of (1)H(alpha), (13)C(alpha), and (13)C(beta) chemical shifts from random coil reveals that there are four regions between residues I28-A45, S50-L57, S66-G75, and F91-N96 that have helical propensity. These regions also have small but positive heteronuclear NOEs, interresidue d(NN) NOEs, and small but significant protection from solvent exchange. However the lack of medium- and long-range NOEs in 3D (15)N- and (13)C-edited spectra, fast amide proton exchange rates (all greater than 1 s(-1)), and long (15)N relaxation (T(1), T(2)) times suggest that the domain from dSLBP does not adopt a well-defined tertiary fold. The backbone residual dipolar couplings (RDCs) for this domain are small and lie close to 0 Hz (+/-2 Hz) for most residues with no well-defined periodicity. The implications of this unfolded state for the function of dSLBP in regulating histone metabolism are discussed.  相似文献   

14.
Short-column sedimentation equilibrium methods have been applied for the first time to tobacco mosaic virus (TMV) protein (0.1 M ionic strength orthophosphate) at pH 6.5 and at pH 7.0 to estimate molecular weights. Previous sedimentation velocity experiments at pH 6.5, 20 degrees C have led to the conclusion that the major boundary with an S0(20),w value of 24.4 +/- 0.1 S consists of a distribution of polymers which are mainly three-turn, 48-51-subunit helical rod aggregates. The directly measured z-average molecular weights together with sedimentation velocity data are entirely consistent with this assignment of a three-turn aggregate. Molecular weights have also been determined under two conditions where a large mass fraction of the protein sediments with an S0(20),w value of 20.3 +/- 0.2 S. At pH 6.5, 6-8 degrees C, the aggregates in this boundary are metastable and correspond to 50-60% of the preparation. At pH 7.0, 20 degrees C at equilibrium, 65-75% of the protein sediments at 20.3 S. The 20.3S boundary is very similar under both conditions and is interpreted as being composed of a distribution of protein aggregates centered about 39 +/- 2 subunits. This result is important in the interpretation of previous kinetic measurements of TMV self-assembly. The current view is that the 34-subunit structure of TMV protein, in the form of a cylindrical disk which is made up of two 17-subunit layers and has been characterized in single-crystal X-ray diffraction studies, plays a central role in the initial binding steps with RNA. The present results are not consistent with the view that there is a significant concentration of the TMV protein disk structure in solution under the usual conditions of TMV self-assembly.  相似文献   

15.
Coagulation factor IX-binding protein, isolated from Trimeresurus flavoviridis (IX-bp), is a C-type lectin-like protein. It is an anticoagulant consisting of homologous subunits, A and B. Each subunit has a Ca(2+)-binding site with a unique affinity (K(d) values of 14muM and 130muM at pH 7.5). These binding characteristics are pH-dependent and, under acidic conditions, the Ca(2+) binding of the low-affinity site was reduced considerably. In order to identify which site has high affinity and to investigate the pH-dependent Ca(2+) release mechanism, we have determined the crystal structures of IX-bp at pH 6.5 and pH 4.6 (apo form), and compared the Ca(2+)-binding sites with each other and with those of the solved structures under alkaline conditions; pH 7.8 and pH 8.0 (complexed form). At pH 6.5, Glu43 in the Ca(2+)-binding site of subunit A displayed two conformations. One (minor) is that in the alkaline state, and the other (major) is that at pH 4.6. However, the corresponding Gln43 residue of subunit B is in only a single conformation, which is almost identical with that in the alkaline state. At pH 4.6, Glu43 of subunit A adopts a conformation similar to that of the major conformer observed at pH 6.5, while Gln43 of subunit B assumes a new conformation, and both Ca(2+) positions are occupied by water molecules. These results showed that Glu43 of subunit A is much more sensitive to protonation than Gln43 of subunit B, and the conformational change of Glu43 occurs around pH6.5, which may correspond to the step of Ca(2+) release.  相似文献   

16.
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.  相似文献   

17.
The Archaeoglobus fulgidis gene RS27_ARCFU encodes the 30S ribosomal protein S27e. Here, we present the high-quality NMR solution structure of this archaeal protein, which comprises a C4 zinc finger motif of the CX(2)CX(14-16)CX(2)C class. S27e was selected as a target of the Northeast Structural Genomics Consortium (target ID: GR2), and its three-dimensional structure is the first representative of a family of more than 116 homologous proteins occurring in eukaryotic and archaeal cells. As a salient feature of its molecular architecture, S27e exhibits a beta-sandwich consisting of two three-stranded sheets with topology B(decreasing), A(increasing), F(decreasing), and C(increasing), D(decreasing), E(increasing). Due to the uniqueness of the arrangement of the strands, the resulting fold was found to be novel. Residues that are highly conserved among the S27 proteins allowed identification of a structural motif of putative functional importance; a conserved hydrophobic patch may well play a pivotal role for functioning of S27 proteins, be it in archaeal or eukaryotic cells. The structure of human S27, which possesses a 26-residue amino-terminal extension when compared with the archaeal S27e, was modeled on the basis of two structural templates, S27e for the carboxy-terminal core and the amino-terminal segment of the archaeal ribosomal protein L37Ae for the extension. Remarkably, the electrostatic surface properties of archaeal and human proteins are predicted to be entirely different, pointing at either functional variations among archaeal and eukaryotic S27 proteins, or, assuming that the function remained invariant, to a concerted evolutionary change of the surface potential of proteins interacting with S27.  相似文献   

18.
Gene 32 protein (g32P), the replication accessory single-stranded nucleic acid binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol of protein. Zinc coordination provides structural stability to the DNA-binding core domain of the molecule, termed g32P-(A+B) (residues 22-253). Optical absorption studies with the Co(II)-substituted protein and 113Cd NMR spectroscopy of 113Cd(II)-substituted g32P-(A+B) show that the metal coordination sphere in g32P is characterized by approximately tetrahedral ligand symmetry and ligation by the Cys-S- atoms of Cys77, Cys87, and Cys90. These studies predicted the involvement of a fourth protein-derived non-thiol ligand to complete the tetrahedral complex, postulated to be His81 on the basis of primary structure prediction and modeling [Giedroc, D.P., Johnson, B.A., Armitage, I.M., & Coleman, J.E. (1989) Biochemistry 28, 2410-2418]. To test this model, we have employed site-directed mutagenesis to substitute each of the two histidine residues in g32P (His64 and His81), accompanied by purification and structural characterization of these single-site mutant proteins. We show that g32P's containing any of three substitutions at residue 64 (H64Q, H64N, and H64L) are isolated from Escherichia coli in a Zn(II)-free form [less than or equal to 0.03 g.atom Zn(II)]. All derivatives show extremely weak affinity for the ssDNA homopolymer poly(dT). All are characterized by a far-UV-CD spectrum reduced in negative intensity relative to the wild-type protein. These structural features parallel those found for the known metal ligand mutant Cys87----Ser87 (C87S) g32P. In contrast, g32P-(A+B) containing a substitution of His81 with glutamine (H81Q), alanine (H81A) or cysteine (H81C), contains stoichiometric Zn(II) as isolated and binds to polynucleotides with an affinity comparable to the wild-type g32P-(A+B). Spin-echo 1H NMR spectra recorded for wild-type and H81Q g32P-(A+B) as a function of pH allow the assignment of His81 ring proteins to delta = 6.81 and 6.57 ppm, respectively, at pH 7.8, corresponding to the C and D histidyl protons of 1H-His-g32P-(A+B) [Pan, T., Giedroc, D.P., & Coleman, J.E. (1989) Biochemistry 28, 8828-8832]. These resonances shift downfield as the pH is reduced from 7.8 to 6.6 without metal dissociation, a result incompatible with His81 donating a ligand to the Zn(II) in wild-type g32P. Likewise, Cys81 in Zn(II) H81C g32P is readily reactive with 5,5'-dithiobis(2-nitrobenzoic acid), unlike metal ligands Cys77, Cys87, and Cys90.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
T Kesvatera  B J?nsson  E Thulin  S Linse 《Proteins》1999,37(1):106-115
The ionization state of seven glutamate residues, one aspartate, and the C-terminal alpha-COOH group in bovine apo calbindin D(9k) has been studied by measurement and modeling of the pH titration curves and apparent pK(a) values. The observed pK(a) ranged from 3.0 to 6.5. Most of the observed acidic groups were half-ionized at lower pH values than those in unstructured proteins. As a rule, the ionization equilibria extended over a wider pH range than in the case of unperturbed single titrations, indicating a complex influence of protein charges on the charge state of each individual residue. Glu17, which is a backbone Ca(2+)-ligand in the N-terminal binding loop of calbindin D(9k), was half-protonated at pH 3.6 but manifested biphasic titration with apparent pK(a) values of 3.2 and 6.5. Complementary Monte Carlo simulations of the titration process and pK(a) values of the acidic groups in calbindin D(9k) reproduce the experimentally observed titration features, except for the pronounced double titration of Glu17. Discrepancies between the results from direct measurement and from modeling may be partly caused by changes in the protein structure when the net charge changes from -8 to +11 over the isoelectric point at pH 5. Proteins 1999;37:106-115.  相似文献   

20.
The gamma(1)-peptide is a 21-residue lipid-binding domain from the non-enveloped Flock House virus (FHV). Unlike enveloped viruses, the entry of non-enveloped viruses into cells is believed to occur without membrane fusion. In this study, we performed NMR experiments to establish the solution structure of a membrane-binding peptide from a small non-enveloped icosahedral virus. The three-dimensional structure of the FHV gamma(1)-domain was determined at pH 6.5 and 4.0 in a hydrophobic environment. The secondary and tertiary structures were evaluated in the context of the capacity of the peptide for permeabilizing membrane vesicles of different lipid composition, as measured by fluorescence assays. At both pH values, the peptide has a kinked structure, similar to the fusion domain from the enveloped viruses. The secondary structure was similar in three different hydrophobic environments as follows: water/trifluoroethanol, SDS, and membrane vesicles of different compositions. The ability of the peptide to induce vesicle leakage was highly dependent on the membrane composition. Although the gamma-peptide shares some structural properties to fusion domains of enveloped viruses, it did not induce membrane fusion. Our results suggest that small protein components such as the gamma-peptide in nodaviruses (such as FHV) and VP4 in picornaviruses have a crucial role in conducting nucleic acids through cellular membranes and that their structures resemble the fusion domains of membrane proteins from enveloped viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号