首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of 3-benzyl-substituted-4(3H)-quinazolinones were designed, synthesized and evaluated for their in vitro antitumor activity. The results of this study demonstrated that 2-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide, 2-(3-benzyl-6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide and 3-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)-propanamide have shown amazing broad spectrum antitumor activity with mean GI50 (10.47, 7.24 and 14.12?µM. respectively), and are nearly 1.5–3.0-fold more potent compared with the positive control 5-FU with mean GI50, 22.60?µM. On the other hand, compounds 6 and 10 yielded selective activities toward CNS, renal and breast cancer cell lines, whereas compound 9 showed selective activities towards leukemia cell lines. Molecular docking methodology was performed for compounds 7 and 8 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib, while compound 11 into ATP binding site of B-RAF kinase inhibited the growth of melanoma cell lines through inhibition of B-RAF kinase, similar to PLX4032.  相似文献   

2.
Some new derivatives of substituted-4(3H)-quinazolinones were synthesized and evaluated for their in vitro antitumor and antimicrobial activities. The results of this study demonstrated that compound 5 yielded selective activities toward NSC Lung Cancer EKVX cell line, Colon Cancer HCT-15 cell line and Breast Cancer MDA-MB-231/ATCC cell line, while NSC Lung Cancer EKVX cell line and CNS Cancer SF-295 cell line were sensitive to compound 8. Additionally, compounds 12 and 13 showed moderate effectiveness toward numerous cell lines belonging to different tumor subpanels. On the other hand, the results of antimicrobial screening revealed that compounds 1, 9 and 14 are the most active against Staphylococcus aureus ATCC 29213 with minimum inhibitory concentration (MIC) of 16, 32 and 32?μg/mL respectively, while compound 14 possessed antimicrobial activities against all tested strains with the lowest MIC compared with other tested compounds. In silico study, ADME-Tox prediction and molecular docking methodology were used to study the antitumor activity and to identify the structural features required for antitumor activity.  相似文献   

3.
A new series of 4,6-disubstituted 2-(4-(dimethylamino)styryl)quinoline 4a,b9a,b was synthesized by the reaction of 2-(4-(dimethylamino)styryl)-6-substituted quinoline-4-carboxylic acids 3a,b with thiosemicarbazide, p-hydroxybenzaldehyde, ethylcyanoacetate, and 2,4-pentandione. In addition, the antitumour activity of all synthesized compounds 3a,b9a,b was studied via MTT assay against two cancer cell lines (HepG2 and HCT116). Furthermore, epidermal growth factor receptor (EGFR) inhibition, using the most potent antitumour compounds, 3a, 3b, 4a, 4b, and 8a, was evaluated. The interpretation of the results showed clearly that the derivatives 3a, 4a, and 4b exhibited the highest antitumour activities against the tested cell lines HepG2 and HCT116 with IC50 range of 7.7–14.2?µg/ml, in comparison with the reference drugs 5-fluorouracil (IC50?=?7.9 and 5.3?µg/ml, respectively) and afatinib (IC50?=?5.4 and 11.4?µg/ml, respectively). In vitro EGFR screening showed that compounds 3a, 3b, 4a, 4b, and 8a exhibited moderate inhibition towards EGFR with IC50 values at micromolar levels (IC50 range of 16.01–1.11?µM) compared with the reference drugs sorafenib (IC50 =?1.14?µM) and erlotinib (IC50 =?0.1?µM). Molecular docking was performed to study the mode of interaction of compounds 3a and 4b with EGFR kinase.  相似文献   

4.
A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8?b selectively inhibited the COX-2 enzyme (IC50?=?~0.20–0.69?μM), with SI values of (>72.5–250) compared with celecoxib (IC50?=?0.16?μM, COX-2 SI:?>?312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50?>?50?μM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10?μM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition?=?~0–10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.  相似文献   

5.
New fluorescent iodobiphenyl ethers bearing para-alkyloxy functional groups of diverse alkyl tail lengths were synthesized. The synthesis process was simply accomplished via an alkali-assisted reaction of aliphatic alcohols with hydroxyl-substituted iodobiphenyls. The molecular structures of the prepared iodobiphenyl ethers were determined using Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and nuclear magnetic resonance (NMR) spectroscopy. Both absorption and fluorescence spectra proved solvatochromic activity. The synthesized alkyloxy-substituted iodobiphenyl analogues were tested for antioxidant effectiveness using 2,2-diphenyl-1-picrylhydrazyl (DPPH) methodology. The antioxidant outcomes demonstrated that the longest hydrocarbon chain-containing substituted iodobiphenyl analogues had a high efficacy with over an IC50 = 21.26 ± 0.36 μg/ml. Alkyloxy-substituted iodobiphenyl analogues also underwent docking operations over the 5IKQ protein.  相似文献   

6.
Nucleophilic aromatic substitution (SNAr) chemistry has been applied to develop many functionalized pentafluorobenzene derivatives. Those compounds are highly specific at the para position of the fluorinated ring. Therefore, they are typical adducts for the preparation of antioxidant molecular systems. In this context, we report the use of SNAr chemistry as a suitable and simple approach for the synthesis of fluorescent antioxidant perfluorinated materials bearing ether bonds in various para-substituted alkoxy chains and with high purity and excellent yields. The fluoroterphenyl core was prepared via alkylation, Cu(I)-assisted decarboxylation, and cross-coupling using the potassium salt of fluorobenzoate, followed by the reaction with different alcohols. The structures of the synthesized fluoroterphenyl adducts were investigated using FT-IR, 1H NMR, 13C NMR, and 19F NMR spectroscopy. The emission spectra and absorption spectra showed solvatochromism. The newly prepared tetrafluoroterphenyl analogues were investigated by antioxidant examination using the 2,2-diphenyl-1-picrylhydrazyl assay. Results were compared with ascorbic acid and butylated hydroxytoluene as references, and revealed that the tetrafluoroterphenyl analogues containing a decyl chain had the highest activity, with an IC50 value of 22.36 ± 0.19 g/ml. The produced tetrafluoroterphenyl analogues were used in molecular docking strategies with a Protein Data Bank protein ID 5IKQ. The antioxidant investigations and docking results were convergent.  相似文献   

7.
Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1–19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.  相似文献   

8.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

9.
Hydrazone is a bioactive pharmacophore that can be used to design antitumor agents. We synthesised a series of hydrazones (compounds 4–24) incorporating a 4-methylsulfonylbenzene scaffold and analysed their potential antitumor activity. Compounds 6, 9, 16, and 20 had the most antitumor activity with a positive cytotoxic effect (PCE) of 52/59, 27/59, 59/59, and 59/59, respectively, while compounds 5, 10, 14, 15, 18, and 19 had a moderate antitumor activity with a PCE of 11/59–14/59. Compound 20 was the most active and had a mean 50% cell growth inhibition (GI50) of 0.26 µM. Compounds 9 and 20 showed the highest inhibitory activity against COX-2, with a half-maximal inhibitory concentration (IC50) of 2.97 and 6.94 μM, respectively. Compounds 16 and 20 significantly inhibited EGFR (IC50 = 0.2 and 0.19 μM, respectively) and HER2 (IC50 = 0.13 and 0.07 μM, respectively). Molecular docking studies of derivatives 9, 16, and 20 into the binding sites of COX-2, EGFR, and HER2 were carried out to explore the interaction mode and the structural requirements for antitumor activity.  相似文献   

10.
A new series of 3-(4-ethylphenyl)-2-substituted amino-3H-quinazolin-4-ones were synthesized by reacting the amino group of 2-hydrazino-3-(4-ethylphenyl)-3H-quinazolin-4-one from 4-ethyl aniline with a variety of aldehydes and ketones. The title compounds were investigated for analgesic, anti-inflammatory and ulcerogenic index activities. The compound 2-(N′-3-pentylidene-hydrazino)-3-(4-ethylphenyl)-3H-quinazolin-4-one (AS2) emerged as the most active compound of the series and was moderately more potent than the reference standard diclofenac sodium. Interestingly the test compounds showed only mild ulcerogenic potential when compared to aspirin.  相似文献   

11.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

12.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

13.
In this study, a series of novel 2-alkyl(aryl)-quinazolin-4(3H)-thiones, 2-R-(quinazolin-4(3H)-ylthio)carboxylic acids and amides were synthesized and evaluated for antimicrobial and anticancer activities. Their structure was confirmed by elemental analysis and spectral data (FT-IR, LC-MS, 1H-NMR). Antimicrobial activity was tested in vitro against Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Candida albicans and NCI in vitro preliminary anticancer activity against nine different cancer types. The most active antibacterial and antifungal compounds were: 2.1, 2.2 and 2.4. The introduction of the carboxylic acid or amide residue into the fourth position of quinazolin-4(3H)-thione resulted in the absence of antimicrobial activity. Substance 3.8 inhibited renal cancer UO-31 line and 2.18 – leukemia CCRF-CEM. The results of in silico molecular docking for DHFR and CK2 kinase had no correlation with in vitro properties, proposing the presence of other biological activity pathways.  相似文献   

14.
Huda Alsaeedi 《Luminescence》2023,38(5):527-535
Novel push–pull fluorescent molecules based on dicyanodihydrofuran that had marked molar extinction coefficients were created and described. The fluorophores were synthesized using the Knoevenagel condensation in arid pyridine at room temperature and acetic acid as a catalytic agent. In addition, a condensation reaction was performed for the activated methyl-containing dicyanodihydrofuran with a 3° amine-containing aromatic aldehyde. The molecular structures for the synthesized fluorophores were determined using various spectral techniques such as 1H or 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, and C, H, N analysis. Ultraviolet–visible (UV–vis) absorption and emission spectra of the prepared fluorophores revealed a high extinction coefficient, which was monitored to be affected by the type of the aryl (phenyl and thiophene)–vinyl bridge in conjugation with the 3° amine donor moiety. The substituents bonded to the tertiary amine, aryl, and alkyl groups, were found to affect the maximum absorbance wavelength. In addition, the synthesized dicyanodihydrofuran analogues were investigated to determine their antimicrobial effectiveness. Derivatives 2b , 4a , and 4b showed reasonable activity towards Gram-positive(+ve) bacteria rather than Gram-negative(−ve) bacteria relative to an amoxicillin drug reference. In addition, a molecular docking stimulation was performed to explore the binding interactions (PDB code: 1LNZ).  相似文献   

15.
Two mononuclear copper(II) complexes, [Cu(C15H16NO2)2] (1) and [Cu(C6H9N2O4)2·3H2O] (2·3H2O), were synthesised and structurally characterised by single-crystal X-ray analysis. The copper(II) atom adopts a square-planar environment in complex 1, while the geometry in 2·3H2O could be described as the distorted square pyramidal. Complexes 1 and 2·3H2O were evaluated for their inhibitory activities against Helicobacter pylori (H. pylori) urease in vitro. They both were found to have strong inhibitory activities against H. pylori urease comparable to that of acetohydroxamic acid (AHA). A docking simulation was performed to position 2 into the H. pylori urease active site to determine the probable binding conformation.  相似文献   

16.
A novel series of 2-(3-phenethyl-4(3H)quinazolin-2-ylthio)-N-substituted anilide and substituted phenyl 2-(3-phenethyl-4(3H) quinazolin-2-ylthio)acetate were designed, synthesized and evaluated for their in-vitro antitumor activity. Compound 15 possessed remarkable broad-spectrum antitumor activity which almost sevenfold more active than the known drug 5-FU with GI50 values of 3.16 and 22.60 μM, respectively. Compound 15 exhibited remarkable growth inhibitory activity pattern against renal cancer (GI50 = 1.77 μM), colon cancer (GI50 = 2.02 μM), non-small cell lung cancer (GI50 = 2.04 μM), breast cancer (GI50 = 2.77 μM), ovarian cancer (GI50 = 2.55 μM) and melanoma cancer (GI50 = 3.30 μM). Docking study was performed for compound 15 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib.  相似文献   

17.
Thirty-eight 3-aryl-4-acyloxyethoxyfuran-2(5H)-ones were designed, prepared and tested for antibacterial activities. Some of them showed significant antibacterial activity against Gram-positive organism, Gram-negative organism and fungus. Out of these compounds, 4-(2-(3-chlorophenylformyloxy)ethoxy)-3-(4-chlorophenyl)furan-2(5H)-one (d40) showed the widest spectrum of activity with MIC50 of 2.0 μg/mL against Staphylococcus aureus, 4.3 μg/mL against Escherichia coli, 1.5 μg/mL against Pseudomonas aeruginosa and 1.2 μg/mL against Candida albicans. Our data disclosed that MIC50 values against whole cell bacteria are positive correlation with MIC50 values against tyrosyl-tRNA synthetase. Meanwhile, molecular docking of d40 into S. aureus tyrosyl-tRNA synthetase active site was also performed, and the inhibitor tightly fitting the active site might be an important reason why it has high antimicrobial activity.  相似文献   

18.
A series of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains were synthesized and tested for their in vitro antitumor activity against human myelogenous leukemia K562 cells. Among them, (3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl)methyl 4-(4-fluorophenyl)piperazine-1-carbodithioate 8q exhibited significant inhibitory activity against K562 cells with IC(50) value of 0.5 microM.  相似文献   

19.
In this paper, we report the synthesis of 2-[(6-substituted benzo[d]thiazol-2-ylcarbamoyl)methyl]-1-(4-substituted phenyl)isothiourea derivatives (4a-y) carrying active pharmacophores essential for anticonvulsant activity. The anticonvulsant activity was evaluated in vivo by maximal electroshock (MES) test and subcutaneous pentylenetetrazole (scPTZ) test in mice. Most of the compounds showed promising anticonvulsant activity. The most active compounds 4b and 4q were found active in both MES and scPTZ models, without signs of neurotoxicity. Compound 4b showed the moderate change in SGOT and alkaline phosphatase level as compared to control. Compounds 4b and 4w were also found to elevate GABA levels in the olfactory lobe, mid brain, medulla oblongata and cerebellum regions of rat brain. In molecular docking study, the title compounds exhibited good binding properties with epilepsy molecular targets such as GABA-A. Structure-activity relationships are also elaborated along with the analysis of lipophilicity. The results suggested that compound 4b is likely to have varied mechanisms of action including voltage-gated ion channel inhibition and modulating GABAergic action.  相似文献   

20.
A series of cis-restricted 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazole analogues of combretastatin A-4 were synthesized and investigated for inhibition of cell proliferation against three cancer cell lines, HT-29, MCF-7, and AGS, and a normal mouse fibroblastic cell line, NIH-3T3, using an MTT assay. The biological study showed that 2-(methylthio) substituted compounds showed little cytotoxic activity against the four cell lines. In contrast, the presence of the 2-(benzylthio) group on the thiazole ring resulted in a significant improvement in cytotoxic activity relative to the 2-(methylthio) substituted derivatives. Furthermore, the inhibition of tubulin polymerization by some potent compounds was evaluated. All the compounds studied were moderate tubulin polymerization inhibitors. The flow cytometry analysis confirmed that the synthesized compounds led to cell cycle arrest at the G2/M phase. Docking simulation was performed to insert these compounds into the crystal structure of tubulin at the colchicine binding site to determine a probable binding model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号