首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that eight laccase genes (Lac 1Lac 8) are preferentially expressed in differentiating xylem and are associated with lignification in loblolly pine (Pinus taeda) [Sato et al. (2001) J Plant Res 114:147–155]. In this study we generated transgenic tobacco suspension cell cultures that express the pine Lac 1 and Lac 2 proteins, and characterized the abilities of these proteins to oxidize monolignols. Lac 1 and Lac 2 enzymatic activities were detected only in the cell walls of transgenic tobacco cells, and could be extracted with high salt. The optimum pH for laccase activity with coniferyl alcohol as substrate was 5.0 for Lac 1 and between 5.0 and 6.0 for Lac 2. The activities of Lac 1 and Lac 2 increased as the concentration of CuSO4 in the reaction mixtures increased in the range from 1 to 100 μM. Both enzymes were able to oxidize coniferyl alcohol and to produce dimers of coniferyl alcohol. These results are consistent with the hypothesis that Lac 1 and Lac 2 are involved in lignification in differentiating xylem of loblolly pine.  相似文献   

2.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

3.
Oxidase activity in the developing xylem of branches of Sitka spruce [Picea sitchensis] (Bong) Carr. was expressed in synchrony with the deposition of lignin. The activity was closely associated with the cell wall but it could be extracted by elution with salt solutions such as 1 M NaCl or CaCl2. A number of different oxidase isoforms with isoelectric points in the range 8–5 were present in these cell wall extracts. These enzymes displayed a marked preference for the oxidation of coniferyl alcohol and efficiently initiated polymerization of coniferyl alcohol into insoluble, lignin-like polymers. They also had a substrate preference and profile of sensitivity to inhibitors that was dissimilar to those reported for classical catechol oxidase or laccase-type polyphenol oxidases. A novel procedure that combines extraction and affinity chromatography on Concanavalin-A to select high-mannose-type glycoproteins provided oxidase activity at higher purity and yield than previously used methods. A single band of oxidase activity (apparent Mr approx. 84 kDa) which was capable of oxidizing α-naphthol/N,N,N′N′-tetramethyl p-phenylene diamine in the absence of added hydrogen peroxide was detected in these cell wall extracts using non-denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The addition of hydrogen peroxide did not intensify the staining of this band but it confirmed the presence of a true peroxidase band of apparent Mr approx. 40 kDa. The properties of this coniferyl alcohol oxidase are different from those of laccase-type polyphenol oxidases (EC 1.10.3.2) previously implicated in lignin deposition in tree species, and their possible roles in this process are discussed. Received: 9 January 1997 / Accepted: 14 March 1997  相似文献   

4.
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.  相似文献   

5.

IWF, intercellular washing fluid
pCMB, p-chloromercuribenzoic acid
SNAP, S-nitroso-N-acetyl-penicillamine SNP, sodium nitroprusside
TMB, 3,3’,5,5’- tetramethylbenzidine

Sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP) are two nitric oxide (NO)-releasing compounds that, when used at 5·0 mol m–3 concentrations, are capable of releasing NO in the aqueous phase at a rate of 35 ± 4 and 47 ± 5 μmol m–3 s–1, respectively. For this reason, the effect of SNP and SNAP on coniferyl alcohol peroxidase and on H2O2 production by the lignifying xylem of Zinnia elegans (L.) has been studied in order to ascertain whether NO, which is a synchronizing chemical messenger in animals and an air pollutant, has any effect on these plant-specific metabolic aspects. The results showed that both SNP and SNAP provoke an inhibition in the mol m–3 concentration range of the coniferyl alcohol peroxidase activity of a basic peroxidase isoenzyme present in the intercellular washing fluid of Z. elegans. The effect of these NO-releasing compounds on peroxidase was confirmed through histochemical studies, which showed that xylem peroxidase was totally inhibited by treatment with these NO donors at 5·0 mol m–3, and by NO at a concentration change rate of 55 ± 5 and 110 ± 9 μmol m–3 s–1. However, SNP, at 5·0 mol m–3, does not have any effect on H2O2 production by the xylem of Z. elegans. The fact that SNP and SNAP are two structurally dissimilar compounds which only share the common ability to release NO in aqueous buffer, and that similar results were obtained when using NO itself, suggest that NO could be considered as an inhibitor of coniferyl alcohol peroxidase which does not affect H2O2 production in the xylem of Z. elegans.  相似文献   

6.
A family of titanium(IV) alkoxo compounds [{Ti(O‐i‐Pr)2(OR)2}2] 1–4 prepared by alcohol exchange of Ti(O‐i‐Pr)4 and a chiral higher‐boiling alcohol [ROH = 1,2:3,4‐di‐O‐isopropylidene‐α‐d ‐galactopyranose, 1,2:5,6‐di‐O‐isopropylidene‐α‐d ‐glucofuranose, (1R,2S,5R)‐(?)‐menthol, (1Sendo)‐(?)‐borneol, (1S,2R,5S)‐(+)‐menthol, and (+)‐borneol] has been tested to evaluate their catalytic activity and stereoselectivity in the asymmetric epoxidation of cinnamyl alcohol. © 2005 Wiley‐Liss, Inc. Chirality  相似文献   

7.
A band of cells closest to the cambium in the xylem of tobacco (Nicotiana tabacum L. cv. Samsun) stems oxidized 2,2-azinobis-(3-ethylbenzo-thiazoline-6-sulphonate) (ABTS), o-dianisidine and syringaldazine in the absence of exogenously added hydrogen peroxide. The oxidation was not prevented by catalase which suggests that the oxidation is not dependent on the production and utilisation of endogenous hydrogen peroxide by cell-wall peroxidases. Cell walls, isolated from tobacco xylem, also oxidized these substrates in the absence of added hydrogen peroxide. The cell walls consumed molecular oxygen whilst oxidizing a range of compounds including coniferyl alcohol. The substrate preference and sensitivity to inhibitors suggest the presence of laccasetype polyphenol oxidases (p-diphenol:O2 oxidoreductase EC 1.14.18.1) which are covalently bound to the wall. The oxidation of coniferyl alcohol by the xylem cell walls was confirmed by assays based on the disappearance of coniferyl alcohol and was not affected by the presence of 500 units·mi-1 catalase or Superoxide dismutase. Prolonged incubation of cell walls with coniferyl alcohol led to the production of a yellow-orange water-insoluble material that precipitated with the cell walls. Although a proportion of this material was soluble in methanol, the majority was tightly associated with the cell walls. These coloured cell walls had elevated lignin contents when assayed by the acetyl-bromide method. Fourier transforminfrared spectroscopic analysis of the coloured cell walls indicated that the increased lignin content is due to the deposition of guaiacyl-type lignin. Digestion of the xylem cell walls with Driselase, a mixture of fungal glycases, produced a wall residue that had a dramatically reduced ability to oxidize ABTS in the absence of added H2O2. However, oxidase activity could not be detected in the Driselase-solubilized extract, although small amounts of oxidase activity could be recovered from the Driselaseresistant wall residue by extraction in 3 M CaCl2.Abbreviations ABTS 2,2-azinobis-(3-ethylbenzo-thiazoline-6-sulphonate) - dl-DOPA 3-(3,4-dihydroxyphenyl)-alanine - FTIR Fourier transform infra-red - o-D o-dianisidine - o-pD o-phenylenediamine - SYR syringaldazine The authors acknowledge funding from the Scottish Office Agriculture and Food Department. They would like to thank Professor J.R. Hillman for his support, Dr. G.D. Lyon for his help and advice with the oxygen electrode and Mrs F. Carr for lignin determinations.  相似文献   

8.
The epitope-G1 gene of Bovine ephemeral fever virus (BEFV) glycoprotein was synthesised by PCR and cloned into expression vector pPIC9K to construct recombinant plasmid pPIC9K-G1. Then the pPIC9K-G1 was linearized and transformed into Pichia pastoris GS115. The recombinant P. pastoris strains were selected by a G418 transformation screen and confirmed by PCR. After being induced with methanol, an expressed protein with 26 kDa molecular weight was obtained, which was much bigger than the predicted size (15.54 kDa). Deglycosylation analysis indicated the recombinant G1 was glycosylated. Western blot and ELISA tests, as well as rabbit immunization and specificity experiments indicated that the target protein had both higher reaction activity and higher immunocompetence and specificity. The recombinant G1 protein could be used as a coating antigen to develop an ELISA kit for bovine ephemeral fever diagnosis. Foundation item: National Dairy Foundation of China (2002BA518A04)  相似文献   

9.
S-adenosylhomocysteine hydrolase (SAHH) is the sole enzyme that catalyses the hydrolysis of S-adenosylhomocysteine (SAH) in methylation reaction. Previous studies have shown that its inhibition or deficiency leads to several human disorders such as severe coagulopathy, hepatopathy and myopathy. However, the effects of SAHH on esophageal squamous cell carcinoma (ESCC) cells have not been explored so far. To determine whether SAHH is involved in carcinogenesis of the esophagus, we investigated the expression of SAHH in ESCC and normal esophageal epithelial cells and found that SAHH was downregulated in ESCC cells compared with normal esophageal epithelial cells (P < 0.05). The overexpressed SAHH in ESCC cells promoted cell apoptosis, inhibited cell migration and adhesion, but did not affect the cell proliferation and cell cycle. Furthermore, an interaction of SAHH with receptor of activated C kinase 1 (RACK1) protein was detected by coimmunoprecipitation and an increased RACK1, which is caused by overexpression of SAHH, was verified by Western blotting. The findings mentioned above demonstrate that SAHH can promote apoptosis, inhibit migration and adhesion of ESCC cells suggesting that it may be involved in carcinogenesis of the esophagus.  相似文献   

10.
Using horse liver alcohol dehydrogenase, stereospecifically tritiated (R)- and (S)-(γ-3H)-coniferyl alcohol was synthesized. Using both of these substrates it was demonstrated that cinnamyl alcohol dehydrogenase from lignifying Forsythia tissue specifically removes the pro-R-hydrogen atom of coniferyl alcohol in the oxidation to the aldehyde. This also means that in the reverse reaction the A-hydrogen of NADPH is transferred to the Re-site of coniferyl aldehyde.  相似文献   

11.
(±)-Tricarbonyl(η5-1-formyl-2-methylcyclopentadienyl)manganese (1) was optically resolved with horse liver alcohol dehydrogenase (HLADH) and two species of yeasts, Saccharomyces sp. H-1 and Rhodotorula rubra IFO 889. Usually, (1R)-1 was preferentially reduced to give (?)-alcohol 2 of ≥ 97% e.e. ? 84% e.e. Ketone analogue (±)-tricarbonyl(η5-1-acetyl-2-methylcyclopentadienyl)-manganese (4) was reduced by the yeasts. The major product by S. sp. H-1 was the (1S,2R,1′S)-(+)-alcohol (5) (≥ 98% e.e.) and the minor product, the (1R,2S,1′S)-(?)-alcohol (6) (86% e.e.). R. rubra gave only the latter alcohol (≥ 99 % e.e.). The Stereodifferentiation mechanism for these bioreductions is discussed in terms of the Prelog rule. The mechanism for HLADH reduction was examined with computer graphics.  相似文献   

12.
We purified two isozymes of coniferyl alcohol dehydrogenase (CADH I and II) to homogeneity from cell-free extracts of Streptomyces sp. NL15-2K. The apparent molecular masses of CADH I and II were determined to be 143 kDa and 151 kDa respectively by gel filtration, whereas their subunit molecular masses were determined to be 35,782.2 Da and 37,597.7 Da respectively by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Thus, it is probable that both isozymes are tetramers. The optimum pH and temperature for coniferyl alcohol dehydrogenase activity were pH 9.5 and 45 °C for CADH I and pH 8.5 and 40 °C for CADH II. CADH I oxidized various aromatic alcohols and allyl alcohol, and was most efficient on cinnamyl alcohol, whereas CADH II exhibited high substrate specificity for coniferyl alcohol, and showed no activity as to the other alcohols, except for cinnamyl alcohol and 3-(4-hydroxy-3-methoxyphenyl)-1-propanol. In the presence of NADH, CADH I and II reduced cinnamaldehyde and coniferyl aldehyde respectively to the corresponding alcohols.  相似文献   

13.
Summary The alcohol-oxidase-mediated oxidation of hexanol to hexanal was conducted by whole cells of Pichia pastoris in a biphasic reaction medium consisting of 3% water and 97% (v/v) water-saturated hexane. At substrate levels of ca. 10 g/l, hexanal was produced at a rate of 0.2 g/g cell dry wt. per hour with product yields and carbon recoveries of 96% or greater. Although the substrate range of P. pastoris alcohol oxidase has been documented as C1–C5 aliphatic alcohols and benzyl alcohol, the use of a biphasic organic reaction medium showed that this enzyme can also oxidize higher molecular weight aliphatic alcohols of C6–C11, as well as the aromatic alcohols phenethyl alcohol and 3-phenyl-1-propanol. The ability of alcohol oxidase to oxidize low-water-soluble alcohols greatly extends the utility of this enzyme.Issued as NRCC no. 30955 Offprint requests to: W. D. Murray  相似文献   

14.
Cell-free extracts from ripening seeds of Arctium lappa L. catalyzed the enantioselective formation of (-)-pinoresinol, (-)-lariciresinol and (-)-secoisolariciresinol from achiral coniferyl alcohol in the presence of NADPH and H2O2. The enantioselectivity of the lignan formation was opposite to that of the (+)-secoisolariciresinol formation catalyzed by cell-free extracts from petioles of the same plant species.  相似文献   

15.
Robert H. White 《Chirality》1996,8(4):332-340
The configuration at the C-9 of methanopterin (MPT) has been determined by comparing the circular dichroism (CD) spectra of MPT and its hydrolytic fragment, 1-[4-[[1-(2-amino-7-methyl-4-hydroxy-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-D -ribitol (HP-1), with the CD spectra of a series of model compounds of known stereochemistry. These compounds included (S)-6-[1-(4-carboxymethylanilino)ethyl]pterin, (S-6(1-hydroxyethyl)-7-methylpterin, (S-6-(1-hydroxyethyl)pterin, (R)-6-(1-phenoxyethyl)pterin, D (+)-neopterin, and L -biopterin. From this comparison it was concluded that MPT has the R configuration at C-9 and is thus configurationally related to D (+)-neopterin, which has the S configuration at C-1. From previous work establishing the relative stereochemistry at C-6, C-7, and C-9 of N5-N10-methenyl-5,6,7,8-tetrahydromethanopterin (N5-N10-methenyl-H4MPT) as R, S, and R, respectively, it is clear that the remaining asymmetric carbons at C-6 and C-7 of H4MPT have the S and S configuration, respectively. Comparison of these latter two positions to the equivalent carbons in 5,6,7,8-tetrahydrofolate (H4folate) show that the steps involved in the biological reduction of MPT to H4MPT occur with the same stereochemical outcome as those involved in the biological reduction of folate to H4folate. © 1996 Wiley-Liss, Inc.  相似文献   

16.
 Random amplified polymorphic DNA (RAPD) markers were identified for self-incompatibility (SI) alleles that will allow marker-assisted selection of desired S-alleles in hazelnut (Corylus avellana L.). DNA was extracted from young leaves collected from field-planted parents and 26 progeny of the cross OSU 23.017 (S1S12)×VR6-28 (S2S26) (OSU23×VR6). Screening of 10-base oligonucleotide RAPD primers was performed using bulked segregant analysis. DNA samples from 6 trees each were pooled into four ‘bulks’, one for each of the following: S1 S2, S1 S26 , S2 S12, and S12 S26. ‘Super bulks’ of 12 trees each for S1, S2, S12, and S26 were then created for each allele by combining the appropriate bulks. The DNA from these four super bulks and from the parents was used as a template in the PCR assays. A total of 250 primers were screened, and one RAPD marker each was identified for alleles S2 (OPI07750) and S1 (OPJ141700). OPJ141700 was identified in 13 of 14 S1 individuals of the cross OSU23×VR6 used in bulking and yielded a false positive in 1 non-S1 individual. This same marker was not effective outside the original cross, identifying 4 of 5 S1 progeny in another cross, ‘Willamette’×VR6-28 (‘Will’×VR6), but yielded false positives in 4 of 9 non-S1 individuals from the cross ‘Casina’×VR6-28 (‘Cas’×VR6). OPI07750 served as an excellent marker for the S2 allele and was linked closely to this allele, identifying 12 of 13 S2 individuals in the OSU23×VR6 population with no false positives. OPI07750 was found in 4 of 4 S2 individuals from ‘Will’×VR and 7 of 7 S2 individuals of ‘Cas’×VR6 with no false positives, as well as 10 of 10 S2 individuals of the cross OSU 296.082 (S1S8)×VR8-32 (S2S26), with only 1 false positive individual out of 21 progeny. OPI07750 was also present in 5 of 5 cultivars carrying the S2 allele, with no false-positive bands in non-S2 cultivars, and correctly identified all but 2 S2 individuals in 57 additional selections in the breeding program. In the OSU23×VR6 population, the recombination rate between the marker OPJ141700 and the S1 allele was 7.6% and between the OPI07750 marker and the S2 allele was 3.8%. RAPD marker bands were excised from gels, cloned, and sequenced to enable the production of longer primers (18 or 24 bp) that were used to obtain sequence characterized amplified regions (SCARs). Both the S1 and S2 markers were successfully cloned and 18 bp primers yielded the sole OPJ141700 product, while 24-bp primers yielded OPI07750 as well as an additional smaller product (700 bp) that was not polymorphic but was present in all of the S-genotypes examined. Received: 10 January 1998 / Accepted: 26 January 1998  相似文献   

17.
Several Nocardia and Pseudomonas spp., as well as some unidentified bacteria, isolated from lake water containing high loads of waste lignin, were tested for their capacity to release 14CO2 from specifically 14C-labelled dehydropolymer of coniferyl alcohol (DHP) or corn stalk lignins. The bacteria were selected according to their ability to degrade phenolic compounds. However, only some of them could release significant amounts of 14CO2 from the labelled lignin. The tested Nocardia spp. were more active than the Pseudomonas spp. and the unidentified bacteria. The most active strains belonged to N. autotrophica. These strains released CO2 significantly from the methoxyl group and transformed the other carbons from the phenylpropane skeleton of lignin also into CO2. Other less demethylating strains also released little CO2 from the other carbons of the lignin molecule. From corn stalk materials which were specifically labelled in the lignin part only small amounts of labelled CO2 were released.Non-Common-Abbreviation Used DHP dehydropolymers of coniferyl alcohol  相似文献   

18.
A nicotinamide adenine dinucleotide (NAD)-dependent coniferyl alcohol dehydrogenase was enriched 1,200-fold from crude extracts ofRhodococcus erythropolis. The purification procedure involved ion exchange chromotography, gel filtration on Biogel A 1,5 and Sephadex G-200, and hydroxyapatite treatment. The enzyme had a molecular weight of approximately 200,000 and displayed maximal activity at pH 9.0. The apparentK m values for NAD and coniferyl alcohol were, respectively, 0.22 and 0.645 mM. Nicotinamide adenine dinucleotide phosphate (NADP) could only partially replace NAD. The enzyme was active with vanillyl alcohol and aromatic alcohols bearing the ,-unsaturated side chain of coniferyl alcohols. These aromatic alcohols included the dilignols dehydrodiconiferyl alcohol and guaiacylglycerol--coniferyl ether.  相似文献   

19.
UDP-glucose:coniferyl alcohol glucosyltransferase was isolated from 10-day-old, darkgrown cell suspension cultures of Paul's scarlet rose. The enzyme was purified 120-fold by (NH4)2SO4 fractionation and chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-100. The enzyme has a pH optimum of 7.5 in Tris-HCl buffer, required an -SH group for activity, and is inhibited by ?-chloromercuribenzoate and EDTA. Its molecular weight is estimated to be 52,000. The enzyme is specific for the glucosylation of coniferyl alcohol (Km 3.3 × 10?6 M) and sinapyl alcohol (Km 5.6 × 10?6 M). With coniferyl alcohol as substrate the apparent Km value for UDP-glucose is 2 × 10?6m. The enzyme activity can be detected in a number of callus-tissue and cell-suspension cultures. The role of this enzyme is believed to be to catalyze the transfer of glucose from UDPG to coniferyl (or sinapyl) alcohol as storage intermediates in lignin biosynthesis.  相似文献   

20.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号