首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to better understand the cascade of melanogenic events in melanocytes, this report has introduced our two recent approaches for the expression of melanogenesis/or melanosome-associated genes and encoded proteins in melanocytes (melanoma cells) after repeated exposure to UV -B and after cotransfection of two human genes, i.e., tyrosinase and tyrosinase-related protein-1 (TRP-1). Repeated exposure of UV B (2.5–5.0 mJ/cm2) caused not only upregulation of tyrosinase and TRP-1 genes but also coordinated increase in the gene and protein synthesis expression of Lamp-1 (lysosome-associated membrane protein-1). When COS-7 kidney cells and amelanotic melanoma (C32 and SKMEL-24) and melanotic melanoma (G361 and SK-MEL-23) cells were exposed to cotransfection of human tyrosinase and TRP-1 cDNAs, there was also an increased expression of Lamp-1 mRNA and protein along with tyrosinase activation and new melanin synthesis. Importantly, single transfectants of human tyrosinase cDNA revealed marked cellular degeneration, whereas this degeneration was not seen in single transfectants of TRP-1 cDNA or cotransfectants of human tyrosinase and TRP-1 cDNAs, indicating that TRP-1 prevented, along with Lamp-1, programmed death of melanocytes after transfection of tyrosinase gene. The coordinated expression of TRP-1 and Lamp-1 was further confirmed by antisense oligodeoxynucleotide hybridization experiment against Lamp-1 gene, showing the decreased expression of TRP-1 as identified by three different types of anti-TRP-1 monoclonal antibodies. We propose therefore that human tyrosinase and TRP-l, when activated or expressed together, will coordinate to upregulate the mRNA expression and protein synthesis of Lamp-1. The Lamp-1 molecules will, in turn, cover the inner surface of melanosomal membrane, together with TRP-1 molecules, thus protecting the melanosomal membrane from toxic melanin intermediates generated during melanogenesis in the presence of active tyrosinase. In contrast, the expression of other lysosome-related proteins, e.g., β-galactosidase and CD63 is not stimulated in new melanogenesis.  相似文献   

2.
3.
4.
Melanogenesis in melanoma cells can be enhanced by psoralens in the absence of UV light. Melanin biosynthesis is regulated by a number of melanocyte-specific proteins, including tyrosinase, DOPAchrome tautomerase (DCT), and tyrosinase-related protein-1 (TRP-1, gp75). To get more insight on the molecular mechanisms involved in psoralens-induced melanogenesis, we determined tyrosinase and DCT activities as well as mRNA and protein levels of tyrosinase, DCT, and TRP-1 in S91 mouse melanoma cells treated by 5-MOP. High concentration of 5-MOP (5 × 10-5 M) induced a time-dependent increase of tyrosinase activity and melanin content, which was correlated to an increase of both mRNA and protein levels of tyrosinase. These results demonstrate that the 5-MOP stimulation of melanogenesis is related to increased tyrosinase synthesis. In addition, 5-MOP stimulated TRP-1 synthesis and induced a dose-dependent decrease of DCT activity without any modification in the expression of the protein. We explored then the signalling pathways involved in 5-MOP-induced melanogenesis and, particularly, the role of cyclic AMP and protein kinase C (PKC). A small stimulation of cyclic AMP production was observed in presence of 5-MOP. Furthermore, 1-oleoyl-2-acetylglycerol (OAG), a PKC activator, potentiated the 5-MOP stimulation of tyrosinase activity, while calphostin, a specific PKC inhibitor, inhibited the 5-MOP induction of tyrosinase activity. Phorbol-myristate acetate (PMA), described as a strong activator of PKC, inhibited also the effect of 5-MOP when used at long term. Taken together, these results demonstrate that in murine melanoma cells 5-MOP stimulates melanogenesis by increasing activity and synthesis of tyrosinase. Tyrosinase and TRP-1 expression are coordinately regulated by 5-MOP Furthermore, a negative correlation between melanogenesis and DCT activity was observed under 5-MOP stimulation. At least, PKA and PKC systems appear to play an important role in the melanogenic effect of 5-MOP.  相似文献   

5.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   

6.
7.
8.
Cultured human melanocytes derived from different skin types responded to frequent treatment with ultraviolet (UV) light with increased melanin synthesis, decreased proliferation, and morphologic signs of aging. These effects were augmented by increased frequency of irradiation with 15.5 mJ/cm2 UV light. Stimulation of melanogenesis by UV light involved an increase in tyrosinase activity, without any change in the amounts of either tyrosinase or tyrosinase-related protein (TRP)-1, and a decrease in the amount of TRP-2, as determined by Western blot analysis. These results are different from the mechanisms by which other melanogenic agents, such as cholera toxin and isobutyl methylxanthine, stimulated melanogenesis, whereby the amounts of tyrosinase, TRP-1 and TRP-2 were increased. The decrease in the amount of TRP-2 might be significant in that it might alter the properties of the newly synthesized melanin. The UV irradiation protocol that was followed blocked melanocytes in G2-M phase of the cell cycle without compromising cellular viability. Following three rounds of UV irradiation, melanocytes could recover from the growth arrest and resume proliferation. Treatment with 0.1 μM α-melanocyte stimulating hormone (α-MSH) postirradiation enhanced the melanogenic effect of UV light and stimulated the melanocytes to proliferate. The effects of α-MSH on the UV induced responses and their implications on photocarcinogenesis are being further investigated. Analyzing the mechanisms by which UV light exposure affects normal melanocytes might lead to a better understanding of how these cells undergo malignant transformation, and why individuals with different skin types differ in their susceptibility to skin cancers.  相似文献   

9.
10.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

11.
The inhibitory effects of oxyresveratrol, the aglycone of mulberroside A, on mushroom and cellular tyrosinase activities and melanin synthesis were evaluated. Mulberroside A and oxyresveratrol showed inhibitory activity against mushroom tyrosinase, with oxyresveratrol demonstrating a greater inhibitory effect than that of mulberroside A. Oxyresveratrol and mulberroside A strongly inhibited melanin production in Streptomyces bikiniensis and exhibited dose-dependent inhibition of tyrosinase activity and inhibition of melanin synthesis in B16F10 melanoma cells. However, the compounds exhibited nearly similar inhibitory effects on the activity of cellular tyrosinase and melanin synthesis in murine melanocytes. The inhibition of melanin synthesis by mulberroside A and oxyresveratrol was involved in suppressing the expression level of melanogenic enzymes, tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). These results indicate that the inhibition rate of mushroom tyrosinase might not provide an accurate estimate of the inhibition rate of melanin synthesis in melanocytes.  相似文献   

12.
13.
Tyrosinase-related protein-2 (TRP-2) is a DOPAchrome tautomerase catalyzing a distal step in the melanin synthesis pathway. Similar to the other two melanogenic enzymes belonging to the TRP gene family, tyrosinase and TRP-1, TRP-2 is expressed in melanocytes and melanoma cells. Despite the increasing evidence of its efficiency as a melanoma antigen, little is known about the maturation and intracellular trafficking of TRP-2. Here we show that TRP-2 is mainly distributed in the TGN of melanoma cells instead of being confined solely to melanosomes. This, together with the plasma membrane occasional localization observed by immunofluorescence, suggest the TRP-2 participation in a recycling pathway, which could include or not the melanosomes. Using pulse-chase experiments we show that the TRP-2 polypeptide folds in the endoplasmic reticulum (ER) in the presence of calnexin, until it reaches a dithiothreitol-resistant conformation enabling its ER exit to the Golgi. If N-glycosylation inhibitors prevent the association with calnexin, the TRP-2 nascent chain undergoes an accelerated degradation process. This process is delayed in the presence of proteasomal inhibitors, indicating that the misfolded chain is retro-translocated from the ER into the cytosol and degraded in proteasomes. This is a rare example in which calnexin although indispensable for the nascent chain folding is not required for its targeting to degradation. Therefore TRP-2 may prove to be a good model to document the calnexin-independent retro-translocation process of proteasomally degraded proteins. Clearly, TRP-2 has a distinct maturation pathway from tyrosinase and TRP-1 and possibly a second regulatory function within the cell.  相似文献   

14.
The inhibitory effect of arbutin, a naturally occurring β-D-glucopyranoside derivative of hydroquinone, on melanogenesis was studied biochemically by using human melano-cytes in culture. Cells were cultured in the presence of different concentrations of arbutin. The maximum concentration of arbutin that was not inhibitory to growth of the cells was 100 ug/ml. At that concentration, melanin synthesis was inhibited significantly by ~20% after 5 days, compared with untreated cells. This phenotypic change was associated with the inhibition of tyrosinase and DHICA polymerase activities, and the degree of inhibition was dose dependent. No significant difference in DOPAchrome tautomerase (DT) activity was observed before or after arbutin treatment. Western blotting experiments revealed there were no changes in protein content or in molecular size of tyrosinase, TRP-1 or TRP-2, indicating that inhibition of tyrosinase activity by arbutin might be due to effects at the post-translational level.  相似文献   

15.
Several genes critical to the regulation of melanin production in mammals have recently been cloned and characterized. They map to the albino, brown, and slaty loci in mice, and encode proteins with similar structures and features, but with distinct catalytic capacities. The albino locus encodes tyrosinase, an enzyme with three distinct catalytic activities—tyrosine hydroxylase, 3,4-dihydroxyphenylalanine (DOPA) oxidase and DHI (5,6-dihydroxyindole) oxidase. The brown locus encodes TRP-l (tyrosinase-related protein-I), which has the same, but greatly reduced, catalytic potential. The slaty locus encodes TRP-2, another tyrosinase related-protein, which has DOPAchrome tautomerase activity. In this study we have examined the enzymatic interactions of these proteins, and their regulation by a novel melanogenic inhibitor. We observed that tyrosinase activity is more stable in the presence of TRP-l and/or TRP-2, but that the catalytic function of TRP-2 is not affected by the presence of TRP-1 or tyrosinase. Other factors also may influence melanogenesis and a unique melanogenic inhibitor suppresses tyrosinase and DOPAchrome tautomerase activities, but does not affect the spontaneous rate of DOPAchrome decarboxylation to DHI. The results demonstrate the catalytic functions of these proteins and how they stably interact within a melanogenic complex in the melanosome to regulate the quantity and quality of melanin synthesized by the melanocyte.  相似文献   

16.
17.
Melanin biosynthesis is completely inhibited in the B16 melanoma cells following their incubation with inhibitors of the two ER glucosidases. This is primarily due to the inactivation of tyrosinase. Under the same conditions, the DOPA-oxidase activity of TRP-1 was only partially affected. In this report we investigate the effects of the perturbation of N-glycan processing in ER on the transport and activation of tyrosinase and TRP-1. We have localized the DOPA-oxidase activity in normal and inhibited cells and suggest that the first DOPA-reactive compartment of the secretory pathway (trans Golgi network) is also the site of tyrosinase activation. The inhibition of N-glycan processing does not affect the intracellular trafficking of the two melanogenic enzymes that are correctly transported to melanosomes. Immunoprecipitation experiments followed by analysis in SDS-PAGE under non-reducing conditions suggest that in inhibited cells, both tyrosinase and TRP-1 are synthesized in a modified conformation as compared to the normal proteins. These data suggest that the inhibition of melanin synthesis is not due to a defective transport but rather to conformational changes induced in the structure of tyrosinase and TRP-1 during their transit through the ER.  相似文献   

18.
Although L‐tyrosine is well known for its melanogenic effect, the contribution of D‐tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L‐tyrosine, D‐tyrosine dose‐dependently reduced the melanin contents of human MNT‐1 melanoma cells and primary human melanocytes. In addition, 500 μM of D‐tyrosine completely inhibited 10 μM L‐tyrosine‐induced melanogenesis, and both in vitro assays and L‐DOPA staining MNT‐1 cells showed that tyrosinase activity is reduced by D‐tyrosine treatment. Thus, D‐tyrosine appears to inhibit L‐tyrosine‐mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D‐tyrosine inhibited melanogenesis induced by α‐MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D‐tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D‐tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte‐derived cells.  相似文献   

19.
The human hair cycle is characterized by successive phases of growth and involution that imply tissue regression and regeneration. As a consequence, the hair melanin unit has to be renewed in a cyclic manner. Actually, the behavior of human hair follicle melanocytes throughout the hair cycle has been poorly studied. Thus, the origin of melanocytes present in the bulb after human hair regeneration is still not clarified, and neither are the events that control the melanin biosynthesis activity in the human hair bulb. In this study, we showed at the cellular level that in human pigmented hair follicles, the expression of tyrosinase and tyrosinase-related protein-1 (TRP-1) was detectable during the anagen phases III/IV through VI, only in those melanocytes which were located in the bulb. During the catagen phase, the two evaluated melanogenic enzymes were detectable no more, although melanocytes were still present in the preceding bulbar area. The epithelial column of catagen follicles and the capsule of telogen follicles also contained inactive melanocytes as evidenced by pMel-17 labeling. At the induction of a new anagen hair follicle, some melanocytes were committed to cell division, but only when located in the nascent bulb close to the dermal papilla. Our results emphasize the close relationship between melanogenesis and the hair cycle and suggest that in humans, melanogenesis is restricted to anagen hair follicles not because of the regulation of tyrosinase activity, but because of melanogenic enzyme expression, e.g., tyrosinase and TRP-1. Furthermore, the fact that in the newly developing anagen hair follicles, cell-division commitment and tyrosinase and TRP-1 expression were observed in melanocytes only when located in the nascent bulb suggests a highly regio-specific melanocyte stimulation in early the anagen phase.  相似文献   

20.
To discover new molecules with an inhibitory activity of melanogenesis a hundred of scorpions, snakes, spiders and amphibians venoms were screened for their capacity to inhibit mushroom tyrosinase using 3,4-l-dihydroxyphenylalanine (l-DOPA) as substrate.The Argiope lobata spider venom proved to be the most active. HPLC fraction containing Argiotoxine-636 (ArgTX-636), a polyamine known for its numerous biological activities, was found to also show a good regulation activity of melanogenesis by inhibiting DOPA and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidases activities, wore by tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1), respectively. Our results demonstrate that ArgTX-636 reduced the mushroom tyrosinase activity in a dose-dependent way with a maximal half inhibitory concentration (IC50) value of 8.34 μM, when l-DOPA is used as substrate. The Lineweaver–Burk study showed that ArgTX-636 is a mixed type inhibitor of the diphenolase activity. Moreover, ArgTX-636 inhibits DHICA oxydase activity of mushroom tyrosinase activity with IC50 at 41.3 μM. ArgTX-636 has no cytotoxicity in B16F10 melanoma cells at concentrations up to 42.1 μM. The effect of ArgTX-636 on melanogenesis showed that melanin production in B16F10 melanoma cell decreased by approximatively 70% compared to untreated cells. ArgTX-636 displayed no significant effect on the TYR expression while the protein level of TRP-1 decreased in B16F10 cells. Thus, ArgTX-636 could have particular interest for cosmetic and/or pharmaceutical use in order to reduce important dermatoses in black and mixed skins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号