首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoamine oxidase (MAO) plays an essential role in the catabolism of neurotransmitter amines. The two isoforms of this enzyme, MAO-A and -B, are considered to be drug targets for the therapy of depression and neurodegenerative diseases, respectively. Based on a recent report that the phthalimide moiety may be a useful scaffold for the design of potent MAO-B inhibitors, the present study examines a series of 5-sulfanylphthalimide analogues as potential inhibitors of both human MAO isoforms. The results document that 5-sulfanylphthalimides are highly potent and selective MAO-B inhibitors with all of the examined compounds possessing IC50 values in the nanomolar range. The most potent inhibitor, 5-(benzylsulfanyl)phthalimide, exhibits an IC50 value of 0.0045 μM for the inhibition of MAO-B with a 427-fold selectivity for MAO-B compared to MAO-A. We conclude that 5-sulfanylphthalimides represent an interesting class of MAO-B inhibitors and may serve as lead compounds for the design of antiparkinsonian therapy.  相似文献   

2.
It has recently been reported that nitrile containing compounds frequently act as potent monoamine oxidase B (MAO-B) inhibitors. Modelling studies suggest that this high potency inhibition may rely, at least in part, on polar interactions between nitrile functional groups and polar moieties within the MAO-B substrate cavity. In an attempt to identify potent and selective inhibitors of MAO-B and to contribute to the known structure–activity relationships of MAO inhibition by nitrile containing compounds, the present study examined the MAO inhibitory properties of series of novel sulfanylphthalonitriles and sulfanylbenzonitriles. The results document that the evaluated compounds are potent and selective MAO-B inhibitors with most homologues possessing IC50 values in the nanomolar range. In general, the sulfanylphthalonitriles exhibited higher binding affinities for MAO-B than the corresponding sulfanylbenzonitrile homologues. Among the compounds evaluated, 4-[(4-bromobenzyl)sulfanyl]phthalonitrile is a particularly promising inhibitor since it displayed a high degree of selectivity (8720-fold) for MAO-B over MAO-A, and potent MAO-B inhibition (IC50 = 0.025 μM). Based on these observations, this structure may serve as a lead for the development of therapies for neurodegenerative disorders such as Parkinson’s disease.  相似文献   

3.
4.
2-Arylthiomorpholine and 2-arylthiomorpholin-5-one derivatives, designed as rigid and/or non-basic phenylethylamine analogues, were evaluated as rat and human monoamine oxidase inhibitors. Molecular docking provided insight into the binding mode of these inhibitors and rationalized their different potencies. Making the phenylethylamine scaffold rigid by fixing the amine chain in an extended six-membered ring conformation increased MAO-B (but not MAO-A) inhibitory activity relative to the more flexible α-methylated derivative. The presence of a basic nitrogen atom is not a prerequisite in either MAO-A or MAO-B. The best Ki values were in the 10?8 M range, with selectivities towards human MAO-B exceeding 2000-fold.  相似文献   

5.
New twenty compounds bearing thiazole ring (3a-3t) were designed and synthesized as monoamine oxidase (MAO) inhibitors. The fluorometric enzyme inhibition assay was used to determine the biological effects of synthesized compounds. Most of them showed remarkable inhibitory activity against both MAO-A and MAO-B. By comparing their IC50 values, it can be seen that active derivatives displayed generally selectivity on MAO-B enzyme. Compounds 3j and 3t, which bear dihydroxy moiety at the 3rd and 4th position of phenyl ring, were the most active derivatives in the series against both isoenzymes. Compounds 3j and 3t showed significant inhibition profile on MAO-A with the IC50 values of 0.134 ± 0.004 µM and 0.123 ± 0.005 µM, respectively, while they performed selectivity against MAO-B with the IC50 values of 0.027 ± 0.001 µM and 0.025 ± 0.001 µM, respectively. Also, docking studies about these compounds were carried out to evaluate their binding modes on the active regions of MAO-A and MAO-B.  相似文献   

6.
Exploring the effect that substituents on the cycloaliphatic ring had on the inhibitory activity against human monoamine oxidase B of a series of 4-aryl-2-cycloalkylidenhydrazinylthiazoles led to the synthesis of a new series of 2-methylcyclopentyl and 3-methylcyclopentyl derivatives which were tested in vitro as mixtures of diastereoisomers. In fact, due to the presence of a chiral center on the cycloaliphatic ring and a trisubstituted CN bond, they exist as four diastereoisomers ((E)-(R), (E)-(S), (Z)-(R), (Z)-(S)). 4-(2,4-Difluorophenyl)-2-(2-(3-methylcyclopentylidene)hydrazinyl)thiazole was chosen as a model to investigate the influence of stereochemical requirements on the inhibitory activity against hMAO-B of these derivatives after a stereoconservative synthesis and semi-preparative HPLC diastereoseparation. (R)-(Z) isomer of this compound was endowed with a potent and selective hMAO-B inhibition higher than that of reference drugs as also corroborated by molecular modeling studies.  相似文献   

7.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

8.
In this study, twenty 3,5-diaryl-4,5-dihydro-1H-pyrazole derivatives with hydroxyl(s) (1a1p, 2a2d) were synthesized and their inhibitory activity on mushroom tyrosinase was examined. The results showed that among these compounds, 1-(5-(3,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone 1d was found to be the most potent tyrosinase inhibitor with IC50 value of 0.301 μM. Kinetic study revealed that these compounds were competitive inhibitors of tyrosinase and their structure–activity relationships were investigated in this article.  相似文献   

9.
Monoamine oxidase B was purified from human liver mitochondria using a monoclonal antibody, MAO B-1C2, which recognizes monoamine oxidase B but not A. Triton X-100 extracts of mitochondria were incubated with purified MAO B-1C2 (IgG1), and the catalytically active enzyme:antibody complex was isolated by affinity chromatography on Protein A-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the complex revealed the presence of four polypeptide bands (monoamine oxidase B, 57,900 dalton; antibody heavy chain, 52,200 dalton; and two light chains, 29,400 and 27,700 dalton), and indicated a 1:1 stoichiometric ratio of enzyme to antibody. This method gave 154-fold purification of the enzyme from mitochondria.  相似文献   

10.
Optimization of high-throughput screening (HTS) hits resulted in the discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of KSP. Dihydropyrazole 15 is a potent, cell-active KSP inhibitor that induces apoptosis and generates aberrant mitotic spindles in human ovarian carcinoma cells at low nanomolar concentrations. X-ray crystallographic evidence is presented which demonstrates that these inhibitors bind in an allosteric pocket of KSP distant from the nucleotide and microtubule binding sites.  相似文献   

11.
A new series of [4-(3-methoxyphenyl)-thiazol-2-yl]hydrazyne derivatives were synthesized in good yield (71–99%) and characterized by elemental analysis and 1H NMR studies. The compounds were assayed for their in vitro human monoamine oxidase (hMAO) inhibitory activity and selectivity and most of them showed IC50 values in the nanomolar range, thus demonstrating our interest in this privileged scaffold. The most active and selective derivative (20), bearing a pyridine moiety on the CN, displayed IC50 = 3.81 ± 0.12 nM and selectivity ratio = 119 toward hMAO-B. Molecular modeling studies were carried out on recent and high resolution hMAO-A and hMAO-B crystallographic structures to better justify the enzyme–inhibitor interaction toward hMAO isoforms and to explain the structure–activity relationship of this kind of inhibitors.  相似文献   

12.
Inhibition of MAO-B has been an effective strategy for the treatment of Parkinson’s disease. To find more potent and selective MAO-B inhibitors with novel chemical scaffold, we designed and synthesized a series of new 2,3-dihydro-1H-inden-1-amine derivatives on basis of our previous study. Furthermore, the corresponding structure-activity relationship (SAR) of these compounds is detailedly discussed. Compounds L4 (IC50?=?0.11?μM), L8 (IC50?=?0.18?μM), L16 (IC50?=?0.27?μM) and L17 (IC50?=?0.48?μM) showed similar MAO-B inhibitory activity as Selegiline. Moreover, L4, L16 and L17 also exhibited comparable selectivity with Selegiline, indicating that L4, L16 and L17 could be promising selective MAO-B inhibitors for further study.  相似文献   

13.
Histone Deacetylases are considered promising targets for cancer epigenetic therapy, and small molecules able to modulate their biological function have recently gained an increasing interest as potential anticancer agents. In spite of their potential application in cancer therapy, most HDAC inhibitors unselectively bind the several HDAC isoforms, giving rise to different side-effects. In this context, we have traced out the structural elements responsible of selective binding for the therapeutically relevant different HDAC isoforms. The structural analysis has been carried out by molecular modeling, docking in the binding pockets of HDAC1–4 and HDAC6–8, 36 inhibitors presenting a well defined selectivity for the different isoforms. As quick proof of evidence, we have designed, synthesized and experimentally tested three selective ligands. The experimental data suggest that the obtained structural guidelines can be useful tools for the rational design of new potent inhibitors against selected HDAC isoforms.  相似文献   

14.
Pharmacological and physicochemical studies of N-unsubstituted indazole-5-carboxamides (subclass I) and their structurally optimised N1-methylated analogues (subclass II), initially developed as drug and radioligand candidates for the treatment and diagnosis of Parkinson’s disease (PD), are presented. The compounds are highly brain permeable, selective, reversible, and competitive monoamine oxidase B (MAO-B) inhibitors with improved water-solubility and subnanomolar potency (pIC50 >8.8). Using a well-validated, combined X-ray/modelling technology platform, we performed a semi-quantitative analysis of the binding modes of all compounds and investigated the role of the indazole N1 position for their MAO-B inhibitory activity. Moreover, compounds NTZ-1006, 1032, and 1441 were investigated for their ability to bind Fe2+ and Fe3+ ions using UV-visible spectroscopy.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

16.
Summary In the mammalian pineal gland, serotonin (5-HT) is located both in the pinealocytes and in the noradrenergic nerve terminals. Pineal 5-HT can be metabolized by three different routes, one of these being its deamination, catalized by monoamine oxidase (MAO). MAO is known to exist as two isozymes, MAO-A and MAO-B. Using two different cytochemical methods at the ultrastructural level, we have localized the presence of MAO in the pineal gland of the rat. The use of selective inhibitors of A-type (clorgyline) and B-type (deprenyl) has shown that MAO-A is localized in the noradrenergic nerve terminals, while pinealocytes contain MAO-B. Taking into account that 5-HT is only deaminated by MAO-A, the specific association of each MAO isozyme with a defined cell type implicates that two cellular compartments are needed in the pineal gland for the biosynthesis of 5-methoxytryptophol and 5-methoxyindole acetic acid, while for the synthesis of melatonin and 5-methoxytryptamine just one cellular compartment, the pinealocyte, is appropriate.  相似文献   

17.
A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis?>?10?µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298?nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432?nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.  相似文献   

18.
3,5-diaryl-4,5-dihydropyrazoles were discovered to be potent KSP inhibitors with excellent in vivo potency. These enzyme inhibitors possess desirable physical properties that can be readily modified by incorporation of a weakly basic amine. Careful adjustment of amine basicity was essential for preserving cellular potency in a multidrug resistant cell line while maintaining good aqueous solubility.  相似文献   

19.
20.
An integrated molecular design strategy combining pharmacophore recognition and scaffold hopping was exploited to discover novel PTP1B inhibitors based on the known PTP1B inhibitor Ertiprotafib. A composite pharmacophore model was proposed from the interaction mode of Ertiprotafib, and 21 diverse molecules from five distinct structural classes were designed and synthesized accordingly. New compounds with considerable inhibition against PTP1B were identified from each series, and the most active compound 3a showed IC50 value of 1.3 μmol L?1 against human recombinant PTP1B. Docking study indicated that the new inhibitors assumed binding modes similar to that of Ertiprotafib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号