首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A newly series of water-soluble 1-alkyl-3-(4-methyl-7, 8-dihydroxy-2H-chromen-2-one) benzimidazolium chloride salts (3a-j) were synthesized and their inhibitory effects on the activity of purified human carbonic anhydrase (hCA) I and II were evaluated. hCA I and II from human erythrocytes were purified by a simple one step procedure by using Sepharose 4B-L-tyrosine-sulphanilamide affinity column. The result showed that all the synthesized compounds were inhibited the CA isoenzymes activity. Among them, 3g and 3j were found to be most active (IC50 = 22.09 µM and 20.33 µM) for hCA I and hCA II, respectively.  相似文献   

2.
A series of sulfonamides incorporating cyclic imide moieties were investigated as inhibitors of several human α-carbonic anhydrase (hCA, EC 4.2.1.1) isoforms. Several carboxylic acids possessing the same scaffolds as the sulfonamides were also included in the study, since the sulfonamidate and the carboxylate are among the frequently used zinc-binding groups (ZBGs) for obtaining zinc enzymes inhibitors. The cytosolic isoform hCA I was moderately inhibited by most of the 30 investigated derivatives; many low nanomolar hCA II inhibitors were detected, whereas some of these compounds were low nanomolar/subnanomolar inhibitors of the transmembrane, tumor-associated isoforms hCA IX and XII. In this series of compounds the SO2NH and the COO ZBGs showed similar efficacy for obtaining potent inhibitors, although some carboxylates had isoform-selective inhibition profiles for the transmembrane CAs.  相似文献   

3.
Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer’s disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.  相似文献   

4.
In this study, a series of sulfamoyl carbamates and sulfamide derivatives were synthesized. Six commercially available benzyl amines and BnOH were reacted with chlorosulfonyl isocyanate (CSI) to give sulfamoyl carbamates. Pd–C catalyzed hydrogenolysis reactions of carbamates afforded sulfamides. The inhibition effects of novel benzylsulfamides on the carbonic anhydrase I, and II isoenzymes (CA I, and CA II) purified from fresh human blood red cells were determined by Sepharose-4B-L-Tyrosine-sulfanilamide affinity chromatography. In vitro studies were shown that all of novel synthesized benzylsulfamide analogs inhibited, concentration dependently, both hCA isoenzyme activities. The novel benzylsulfamide compounds investigated here exhibited nanomolar inhibition constants against the two isoenzymes. Ki values were in the range of 28.48 ± 0.01–837.09 ± 0.19 nM and 112.01 ± 0.01–268.01 ± 0.22 nM for hCAI and hCA II isoenzymes, respectively. Molecular modeling approaches were also applied for studied compounds.  相似文献   

5.
Mannich bases of thymol were synthesized. The aminomethylation reaction was realised in the ortho position of the phenol for compounds 2 (dipropylamine), 3 (benzylamine), and 4 (dibenzylamine) while it was from para position for 1 (dimethylamine), 5 (piperidine), 6 (morpholine) and 7 (N-methylpiperazine). The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were asssessed against hCA I and hCA II. All compounds moderately inhibited hCA I and hCA II. The cytotoxicity of the compounds against four human oral squamous cell carcinoma cell lines were compared those against three normal oral cells. Tumor specificity values were about 2 or slightly more for the compounds 2, 3, 4, 5 and 6. Compound 2 showed cytostatic activity against OSCC cell lines at 16 to 32-fold lower concentrations as compared with normal cells. This suggests that compound 2 can be considered as cytotoxicity enhancing drug candidate for further investigations.  相似文献   

6.
A series of new derivatives was prepared by derivatisation of the 7-amino moiety present in 7-amino-3,4-dihydroquinolin-2(1H)-one, a compound investigated earlier as CAI. The derivatisation was achieved by: i) reaction with arylsulfonyl isocyanates/aryl isocyanates; (ii) reaction with fluorescein isothiocyanate; (iii) condensation with substituted benzoic acids in the presence of carbodiimides; (iv) reaction with 2,4,6-trimethyl-pyrylium tetrafluoroborate; (v) reaction with methylsulfonyl chloride and (vi) reaction with maleic anhydride. The new compounds were assayed as inhibitors of four carbonic anhydrases (CA, EC 4.2.1.1) human (h) isoforms of pharmacologic relevance, the cytosolic hCA I and II, the membrane-anchored hCA IV and the transmembrane, tumour-associated hCA IX. hCA IX was the most inhibited isoform (KIs ranging between 243.6 and 2785.6?nm) whereas hCA IV was not inhibited by these compounds. Most derivatives were weak hCA I and II inhibitors, with few of them showing KIs?相似文献   

7.
A set of N,N′-disubstituted sulfamides and sodium cyclamate have been tested for their inhibitory action against six isoforms of carbonic anhydrase (CA, EC 4.2.1.1) found in the brain, that is, CA I, CA II, CA VII, CA IX, CA XII and CA XIV, some of which are involved in epileptogenesis. The biological data showed interesting results for CA VII inhibition, the isozyme thought to be a novel antiepileptic target. Strong CA VII inhibitors, with Ki values in the low nanomolar–subnanomolar range were identified. Some of these derivatives showed selectivity for inhibition of CA VII versus the ubiquitous isoform CA II, for which the Ki values were in the micromolar range. Molecular modeling approaches were employed to understand the binding interactions between these compounds and the two CA isoforms, since the mechanism of action of such disubstituted sulfamides was not yet investigated by means of X-ray crystallography.  相似文献   

8.
Novel sulfanilamide derivatives were synthesized and evaluated for carbonic anhydrase inhibitory activity as a target for the treatment of glaucoma, and antibacterial properties for use in chemotherapy. Synthesized compounds were characterized by FT-IR, 1H NMR, 13C NMR and photoluminescence. In vitro inhibitory activities were measured by UV-Vis and some of the compounds were found have greater inhibitory effects than the lead compound sulfanilamide. The correlation between inhibitory activity, biological properties and the physicochemical properties of water solubility and partition coefficients was also investigated. Sulfanilamide derivatives gave intense emissions upon irradiation by UV light and a dimethyl substituted compound and a cyclic analog have photoluminescence quantum yields 42% and 31% and long excited-state lifetimes of 3.92 and 2.91 ns, respectively.  相似文献   

9.
The purification of red blood cell carbonic anhydrase (CA, EC 4.2.1.1) from ostrich (scCA) blood is reported, as well as an inhibition study of this enzyme with a series of aromatic and heterocylic sulfonamides. The ostrich enzyme showed a high activity, comparable to that of the human isozyme II, with kcat of 1.2·106 s? 1 and kcat/KM of 1.8·107 M? 1 s? 1, and an inhibition profile quite different from that of the human red blood cell cytosolic isozymes hCA I and II. scCA has generally a lower affinity for sulfonamide inhibitors as compared to hCA I and II. The only sulfonamide which behaved as a very potent inhibitor of this enzyme was ethoxzolamide (KI = 3.9 nM) whereas acetazolamide and sulfanilamide behaved as weaker inhibitors (inhibition constants in the range 303–570 nM). Several other aromatic and heterocyclic sulfonamides, mostly derivatives of sulfanilamide, homosulfanilamide, 4-aminoethylbenzenesulfonamide or 5-amino-1,3,4-thiadiazole-2-sulfonamide, showed good affinities for the ostrich enzyme, with KI values in the range 25–72 nM.  相似文献   

10.
In the last years, the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the activity of different enzymes were investigated. Only the membrane-anchored enzymes did decrease their activity, up to 50%. In this work, the effect of ELF-EMF on bovine lung membrane carbonic anhydrase (CA) were studied. Carbonic anhydrases are a family of 14 zinc-containing isozymes catalyzing the reversible reaction: CO2+H2O = HCO3? +H+. CA differ in catalytic activity and subcellular localization. CA IV, IX, XII, XIV, and XV are membrane bound. In particular, CA IV, which is expressed in the lung, is glycosyl phosphatidyl inositol-linked to the membrane, therefore it was a candidate to inhibition by ELF-EMF. Exposure to the membranes to a field of 75 Hz frequency and different amplitudes caused CA activity to a reproducible decrease in enzymatic activity by 17% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. When the source of enzyme was solubilized with Triton, the field lost its effect on CA enzymatic activity, suggesting a crucial role of the membrane, as well as of the particular linkage of the enzyme to it, in determining the conditions for CA inactivation. Results are discussed in terms of the possible physiologic effects of CA inhibition in target organs.  相似文献   

11.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

12.
Mono- and dihalogenated histamine derivatives incorporating fluorine, chlorine and bromine have been prepared together with the corresponding boc-protected compounds at the aminoethyl group. They have been investigated as activators of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The cytosolic human (h) isoforms hCA I and II were moderately activated by the boc-protected halogenated histamines and very effectively activated by the deprotected ones. Low nanomolar and subnanomolar hCA I and II activators have been detected for the first time, starting from histamine as lead which has an affinity of 2 μM against isoform I and of 125 μM against hCA II.  相似文献   

13.
Acridine orange (AO) a fluorescent cationic dye used for the management of human musculoskeletal sarcomas, due to its strong tumoricidal action and accumulation in the acidic environment typical of hypoxic tumors, was used for the preparation of a primary sulfonamide derivative. The rationale behind the drug design is the fact that hypoxic, acidic tumors overexpress carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX, which is involved in pH regulation, proliferation, cell migration and invasion, and this enzyme is strongly inhibited by primary sulfonamides. The AO-sulfonamide derivative was indeed a potent, low nanomolar CA IX inhibitor whereas its inhibition of the cytosolic isoforms CA I and II was in the micromolar range. A second transmembrane, tumor-associated isoform, CA XII, was also effectively inhibited by the AO-sulfonamide derivative, making this compound an interesting theranostic agent for the management of hypoxic tumors.  相似文献   

14.
Effects of nicotine, nicotine+vitamin E and nicotine+Hippophea rhamnoides L. extract (HRe-1) on muscle, heart, lungs, testicle, kidney, stomach, brain and liver carbonic anhydrase (CA; EC 4.2.1.1.) enzyme activities were investigated in vivo. Groups of rats were given nicotine (0.5?mg/kg/day, i.p.), nicotine+vitamin E (75?mg/kg/day, i.g.), nicotine+HRe-1 (250?mg/kg/day, i.g.) and a control group vehicle only. The results showed that nicotine inhibited the heart, lung, stomach and liver CA enzyme activities by ~80% (p?<?0.001), ~94% (p?<?0.001), ~47% (p?<?0.001) and ~81% (p?<?0.001) respectively, and activated muscle and kidney, but had no effects on the testicle and brain CA activities. Nicotine+vitamin E inhibited the heart and liver CA enzyme activities by ~50% (p?<?0.001), and ~50% (p?<?0.001), respectively, and nicotine+vitamin E activated the muscle CA activity. However, nicotine+vitamin E had no effect on lung, testicle, kidney, stomach and brain CA activities. Nicotine+HRe-1 inhibited the heart and stomach CA enzyme activities by ~51% (p?<?0.001), and ~32% (p?<?0.002), respectively, and activated the muscle and brain CA activities, but had no effects on the lung, testicle, kidney, and liver CA activities. In vitro CA inhibition results for similar experiments correlated well with the in vivo experimental results in lungs, testicles, kidney, stomach, brain and liver tissues.  相似文献   

15.
In this study, a series of novel bis-thiomethylcyclohexanone compounds (3a–3j) were synthesized by the addition of thio-Michael to the bis-chalcones under mild reaction conditions. The bis-thiomethylcyclohexanone derivatives (bis-sulfides) were characterized by 1H NMR, 13C NMR, FTIR and elemental analysis techniques. Furthermore, the molecular and crystal structures of 3h, 3i and 3j compounds were determined by single crystal X-ray diffraction studies. In this study, X-ray crystallography provided an alternative and often-complementary means for elucidating functional groups at the enzyme inhibitory site. Acetylcholinesterase (AChE) is a member of the hydrolase protein super family and has a significant role in acetylcholine-mediated neurotransmission. Here, we report the synthesis and determining of novel bis-thiomethylcyclohexanone compounds based hybrid scaffold of AChE inhibitors. The newly synthesized bis-thiomethylcyclohexanone compounds showed Ki values of in range of 39.14–183.23 nM against human carbonic anhydrase I isoenzyme (hCA I), 46.03–194.02 nM against human carbonic anhydrase II isoenzyme (hCA II), 4.55–32.64 nM against AChE and 12.77–37.38 nM against butyrylcholinesterase (BChE). As a result, novel bis-thiomethylcyclohexanone compounds can have promising anti Alzheimer drug potential and record novel hCA I, and hCA II enzymes inhibitor.  相似文献   

16.
The carbonic anhydrase (EC 4.2.1.1) of Rhodospirillum rubrum has been purified to apparent homogeneity and some of its properties have been determined. The enzyme was cytoplasmic and was found only in photosynthetically grown cells. It had a molecular weight of about 28,000, and was apparently composed of two equal subunits. The amino acid composition was similar to that of other reported carbonic anhydrases except that the R. rubrum enzyme contained no arginine. The isoelectric point of the enzyme was 6.2 and the pH optimum was 7.5. It required Zn(II) for stability and enzymatic activity. The K m(CO2) was 80 mM. Typical carbonic anhydrase inhibition patterns were found with the R. rubrum enzyme. Strong acetazolamide and sulfanilamide inhibition confirmed the importance of Zn(II) for enzymatic activity as did the anionic inhibitors iodide, and azide. Other inhibitors indicated that histidine, sulfhydryl, lysine and serine residues were important for enzymatic activity.Abbreviation CA carbonic anhydrase In memory of R. Y. Stanier  相似文献   

17.
Isoform IX of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA IX, is a transmembrane protein involved in solid tumor acidification through the HIF-1α activation cascade. CA IX has a very high catalytic activity for the hydration of carbon dioxide to bicarbonate and protons, even at acidic pH values (of around 6.5), typical of solid, hypoxic tumors, which are largely unresponsive to classical chemo- and radiotherapy. Thus, CA IX is used as a marker of tumor hypoxia and as a prognostic factor for many human cancers. CA IX is involved in tumorigenesis through many pathways, such as pH regulation and cell adhesion control. The X-ray structure of the catalytic domain of CA IX has been recently reported, being shown that CA IX has a typical α-CA fold. However, the CA IX structure differs significantly from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the proteoglycan (PG) domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. As all mammalian CAs, CA IX is inhibited by several main classes of inhibitors, such as the inorganic anions, the sulfonamides and their bioisosteres (sulfamates, sulfamides, etc.), the phenols, and the coumarins. The mechanism of inhibition with all these classes of compounds is understood at the molecular level, but the sulfonamides and their congeners have important applications. It has been recently shown that both in vitro, in cell cultures, as well as in animals with transplanted tumors, CA IX inhibition with sulfonamides lead to a return of the extracellular pH to more normal values, which leads to a delay in tumor growth. As a consequence, CA IX represents a promising antitumor target for the development of anticancer agents with an alternative mechanism of action.  相似文献   

18.
New sulfonamide-hydrazone derivatives (3a-3n) were synthesized to evaluate their inhibitory effects on purified human carbonic anhydrase (hCA) I and II. The inhibition profiles of the synthesized compounds on hCA I-II isoenzyme were investigated by comparing their IC50 and Ki values. Acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide, AZA) has also been used as a standard inhibitor. The compound 3e demonstrated the best hCA I inhibitory effect with a Ki value of 0.1676 ± 0.017 µM. Besides, the compound 3m showed the best hCA II inhibitory effect with a Ki value of 0.2880 ± 0.080 µM. Cytotoxicity of the compounds 3e and 3m toward NIH/3T3 mouse embryonic fibroblast cell line was observed and the compounds were found to be non-cytotoxic. Molecular docking studies were performed to investigate the interaction types between active compounds and hCA enzymes. Pharmacokinetic profiles of compounds were assessed by theoretical ADME predictions. As a result of this study a novel and potent class of CA inhibitors were identified with a good activity potential.  相似文献   

19.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   

20.
A series of novel sulfamides incorporating the dopamine scaffold were synthesized. Reaction of amines and tert-butyl-alcohol/benzyl alcohol in the presence of chlorosulfonyl isocyanate (CSI) afforded sulfamoyl carbamates, which were converted to the title compounds by treatment with trifluoroacetic acid or by palladium-catalyzed hydrogenolysis. Inhibition of six α-carbonic anhydrases (CAs, EC 4.2.1.1), that is, CA I, CA II, CA VA, CA IX, CA XII and CA XIV, and two β-CAs from Candida glabrata (CgCA) and Mycobacterium tuberculosis (Rv3588) with these sulfamides was investigated. All CA isozymes were inhibited in the low micromolar to nanomolar range by the dopamine sulfamide analogues. Kis were in the range of 0.061–1.822 μM for CA I, 1.47–2.94 nM for CA II, 2.25–3.34 μM for CA VA, 0.041–0.37 μM for CA IX, 0.021–1.52 μM for CA XII, 0.007–0.219 μM for CA XIV, 0.35–5.31 μM for CgCA and 0.465–4.29 μM for Rv3588. The synthesized sulfamides may lead to inhibitors targeting medicinally relevant CA isoforms with potential applications as antiepileptic, antiobesity antitumor agents or anti-infective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号