首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds ( 11 – 18 ) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66–28.88 nM against hCA I, 14.44–30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki: 8.34±1.60 nM) and hCA II (Ki: 16.40±1.00 nM) is compound number 11 . Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds ( 11 – 18 ) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.  相似文献   

2.
Sulfonamide compounds known as human carbonic anhydrase (hCA) inhibitors are used in the treatment of many diseases such as epilepsy, antibacterial, glaucoma, various diseases. 1,3-diaryl-substituted triazenes and sulfaguanidine are used for therapeutic purposes in many drug structures. Based on these two groups, the synthesis of new compounds is important. In the present study, the novel 1,3-diaryltriazene-substituted sulfaguanidine derivatives ( SG1-13 ) were synthesized and fully characterized by spectroscopic and analytic methods. Inhibitory effect of these compounds on the hCA I and hCA II was screened as in vitro. All the series of synthesized compounds have been identified as potential hCA isoenzymes inhibitory with KI values in the range of 6.44±0.74-86.85±7.01 nM for hCA I and with KI values in the range of 8.16±0.40-77.29±9.56 nM for hCA II. Moreover, the new series of compounds showed a more effective inhibition effect than the acetazolamide used as a reference. The possible binding positions of the compounds with a binding affinity to the hCA I and hCA II was demonstrated by in silico studies. In conclusion, compounds with varying degrees of affinity for hCA isoenzymes have been designed and as selective hCA inhibitors. These compounds may be potential alternative agents that can be used to treat or prevent diseases associated with glaucoma and hCA inhibition.  相似文献   

3.
Four inhibitors of human carbonic anhydrase II (hCA II) were designed based on the previously reported subnanomolar 1,3-oxazole-based sulfonamide inhibitors of the enzyme to incorporate primary and secondary amine functionality in the carboxamide side chain. The new hydrophilic compounds were found to inhibit the target isoform in sub-nanomolar to low nanomolar range with a good degree of selectivity to several other hCA isoforms. The hydrophilic character of these compounds is advantageous for intraocular residence time but not for corneal permeability which generally requires that a drug be sufficiently lipophilic. Two of the four compounds investigated, however, were found to exert comparable efficacy as 1% eye drops in PBS to that of the clinically used 2% dorzolamide (Trusopt®) eye drops. This indicated that the absorption of the compounds may occur via alternative route across conjunctiva and sclera.  相似文献   

4.
Abstract

The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.  相似文献   

5.
We report a series of novel metanilamide-based derivatives 3aq bearing the 2-mercapto-4-oxo-4H-quinazolin-3-yl moiety as tail. All compounds were synthesized by means of straightforward condensation procedures and were investigated in vitro for their inhibition potency against the human (h) carbonic anhydrase (CA; EC 4.2.1.1.1) isoforms I, II, IX and XII. Among all compounds tested the 6-iodo 3g and the 7-fluoro 3i derivatives were the most potent inhibitors against the tumor associated CA IX and XII isoform (KIs 1.5 and 2.7 nM respectively for the hCA IX and KIs 0.57 and 1.9 nM respectively for the hCA XII).The kinetic data reported here strongly support compounds of this type for their future development as radiotracers in tumor pathologies which are strictly dependent on the enzymatic activity of the hCA IX and XII isoforms.  相似文献   

6.
A series of aromatic and heterocyclic sulfonamides incorporating R- and S-camphorsulfonyl moieties were synthesized and investigated for the inhibition of several mammalian isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The new sulfonamides selectively inhibited the mitochondrial isozymes hCA VA and VB (h = human isoform) over the cytosolic, off-target ones hCA I and II, with inhibition constants in the low nanomolar range. The chirality and position of the groups substituting the sulfonamide scaffold greatly influenced CA inhibitory properties. These compounds are excellent leads for designing isoform-selective enzyme inhibitors targeting mitochondrial CAs involved in lipogenesis and obesity.  相似文献   

7.
A series of ureido and bis-ureido derivatives were prepared by reacting histamine with alkyl/aryl-isocyanates or di-isocyanates. The obtained derivatives were assayed as activators of the enzyme carbonic anhydrase (CA, EC 4.2.1.1), due to the fact that histamine itself has this biological activity. Although inhibition of CAs has pharmacological applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents, activation of these enzymes is not yet properly exploited pharmacologically for cognitive enhancement or Alzheimer’s disease treatment, conditions in which a diminished CA activity was reported. The ureido/bis-ureido histamine derivatives investigated here showed activating effects only against the cytosolic human (h) isoform hCA I, having no effect on the widespread, physiologically dominant isoform hCA II. This is the first report in which CA I-selective activators were identified. Such compounds may constitute interesting tools for better understanding the physiological/pharmacological effects connected to activation of this widespread CA isoform, whose physiological function is not fully understood.  相似文献   

8.
Hydrophilic derivatives of an earlier described series of carbonic anhydrase inhibitors have been designed, prepared and profiled against a panel of carbonic anhydrase isoforms, including the glaucoma-related hCA II. For all hydrophilic derivatives, computational prediction of intraocular permeability routes showed the predominance of conjunctival rather than corneal absorption. The potentially reactive primary or secondary amine periphery of these compounds makes them suitable candidates for bioconjugation to polymeric drug carriers. As was shown previously, the most active hCA II inhibitor is efficacious in alleviating intraocular pressure in normotensive rabbits with efficacy matching that of dorzolamide.  相似文献   

9.
The possible sulfatase activity of several carbonic anhydrase (CA, EC 4.2.1.1) isoforms have been investigated with a series of synthesized methanesulfonate derivatives of phenols. Four α-CA isozymes, i.e. hCA I, hCA II, hCA IV and hCA VI (h?=?human isoform), were included in the study. We evidenced that the original sulfonate esters are being hydrolyzed effectively to the corresponding phenols which there after act as CA inhibitors. The KI-s of these compounds ranged from 10.24 to 4012 µM against hCA I, 0.10 to 35.42 µM against hCA II, 0.49 to 45.06 µM against hCA IV and 3.27 to 608 µM against CA VI, respectively. The relevant sulfatase activity of CA with these esters is amazing considering the fact that 4-nitrophenyl-sulfate, an activated ester, is not a substrate of these enzymes.  相似文献   

10.
11.
In continuation of our previous studies to optimise potent carbonic anhydrase inhibitors, two new series of isatin N-phenylacetamide based sulphonamides were synthesised and screened for their human (h) carbonic anhydrase (EC 4.2.1.1) inhibitory activities against four isoforms hCA I, hCA II, hCA IX and hCA XII. The indole-2,3-dione derivative 2h showed the most effective inhibition profile against hCAI and hCA II (KI = 45.10, 5.87 nM) compared to acetazolamide (AAZ) as standard inhibitor. Moreover, 2h showed appreciable inhibition activity against the tumour-associated hCA XII, similar to AAZ showing KI of 7.91 and 5.70 nM, respectively. The analogs 3c and 3d showed good cytotoxicity effects, and 3c revealed promising selectivity towards lung cell line A549. Molecular docking was carried out for 2h and 3c to predict their binding conformations and affinities towards the hCA I, II, IX and XII isoforms.  相似文献   

12.
New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents.  相似文献   

13.
We report the synthesis and characterisation of a novel series of triazole benzenesulfonamide derivatives, which incorporate the general pharmacophore associated with carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The synthesised compounds were tested in vitro against four human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I, hCA II, hCA IV and hCA IX. The obtained results showed that the tumour-associated hCA IX was the most sensitive to inhibition with the synthesised derivatives, with the triazolo-pyridine benzenesulfonamides 14, 16 and 17 being the most effective inhibitors. Some selected compounds were chosen for a single dose anti-proliferative activity testing against a panel of 57 human tumour cell lines and show some anti-proliferative activity ex vivo.  相似文献   

14.
In search of selective carbonic anhydrase (CA) IX inhibitors endowed with apoptotic inducing properties, we designed and synthesised two subsets of 4- and 3-(5-aryl-(4-phenylsulphonyl)-1H-1,2,3-triazol-1-yl)benzenesulphonamides. All compounds were assayed for human carbonic anhydrase (hCA) isoforms I, II, IV, and IX inhibition. Isoforms hCA I and hCA IV were weakly inhibited by most of the synthesised compounds. Many four-substituted benzenesulphonamides displayed low nanomolar inhibition against isoform hCA II, unlike the three-substituted analogues. All target compounds exhibited good inhibition profile with KI values ranging from 16.4 to 66.0 nM against tumour-associated isoform hCA IX. Some selective and potent inhibitors of hCA IX were assayed for in vitro apoptotic induction in goat testicular cells. Compounds 10d and 10h showed interesting apoptotic induction potential. The present study may provide insights into a strategy for the design of novel anticancer agents based on hCA inhibitors endowed with apoptotic interference.  相似文献   

15.
The similarity of human carbonic anhydrase (CA) active sites makes it difficult to design selective inhibitors for one or several CA isoforms that are drug targets. Here we synthesize a series of compounds that are based on 5-[2-(benzimidazol-1-yl)acetyl]-2-chloro-benzenesulfonamide (1a) which demonstrated picomolar binding affinity and significant selectivity for CA isoform five A (VA), and explain the structural influence of inhibitor functional groups to the binding affinity and selectivity. A series of chloro-substituted benzenesulfonamides bearing a heterocyclic tail, together with molecular docking, was used to build inhibitors that explore substituent influence on the binding affinity to the CA VA isoform.  相似文献   

16.
A series of new compounds was obtained by reaction of aromatic/heterocyclic sulfonamides incorporating amino groups with N,N-diphenylcarbamoyl chloride and diphenylacetyl chloride. These sulfonamides were assayed for the inhibition of three carbonic anhydrase (CA, EC 4.2.1.1) isozymes: the cytosolic CA I and CA II, and the transmembrane, cancer-associated isozyme CA IX. Good inhibitors against all these isoforms were detected, and the inhibition profile of the newly investigated isozyme IX was observed to be different from that of the cytosolic isozymes, I and II. This may lead to the development of novel anticancer therapies based on the selective inhibition of CA IX.  相似文献   

17.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

18.
New phenolic mono and bis Mannich bases incorporating benzimidazole, such as 2-(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol and 2,6-bis(aminomethyl)-4-(1H-benzimidazol-2-yl)phenol were synthesized starting from 4-(1H-benzimidazol-2-yl)phenol. Amines used for the synthesis included dimethylamine, pyrrolidine, piperidine, N-methylpiperazine and morpholine. The CA inhibitory properties of these compounds were tested on the human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and hCA II. These new compounds, as many phenols show moderate CA inhibitory properties.  相似文献   

19.
Abstract

We investigated a series of N-hydroxysulfamides obtained by Ferrier sulfamidoglycosylation for the inhibition of two bacterial carbonic anhydrases (CAs, EC 4.2.1.1) present in the pathogen Brucella suis. bsCA I was moderately inhibited by these compounds with inhibition constants ranging between 522 and 958?nM and no notable differences of activity between the acetylated or the corresponding deacetylated derivatives. The compounds incorporating two trans-acetates and the corresponding deprotected ones were the most effective inhibitors in the series. bsCA II was better inhibited, with inhibition constants ranging between 59.8 and 799?nM. The acetylated derivatives were generally better bsCA II inhibitors compared to the corresponding deacetylated compounds. Although these compounds were not highly isoform-selective CA inhibitors (CAIs) for the bacterial over the human CA isoforms, some of them possess inhibition profiles that make them interesting leads for obtaining better and more isoform-selective CAIs targeting bacterial enzymes.  相似文献   

20.
Abstract

Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn2+-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20–515.98?μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号